The articles below are groupd to guide you through multiple topics related to forest landscape ecology. The articles are designed to provide some general background and context, as well as technical detail to aid your in your study design. Articles may be read and summarized in any order. Links to most articles are provided. If a reading is not available, please find it using Google Scholar and add it to the library.
- Mitchell, R., Hiers, J., O’Brien, J., & Starr, G. (2009). Ecological forestry in the southeast: understanding the ecology of fuels. Journal of Forestry, 107, 391–397. Retrieved from http://www.ingentaconnect.com/content/saf/jof/2009/00000107/00000008/art00006
- Bigelow, S. W., & Canham, C. D. (2015). Litterfall as a niche construction process in a northern hardwood forest. Ecosphere, 6(7), art117. https://doi.org/10.1890/es14-00442.1
- Loudermilk, E.L., J.K. Hiers, S Pokswinski, J.J. O'Brien, A Barnett, and R.J. Mitchell. (2016). The apth back: oaks (Quercus spp.) facilitate longleaf pine (Pinus palustris) establishment in xeric sites. Ecosphere 7(6): e01361. https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.1361
- Kreye, J. K., Varner, J. M., Hamby, G. W., & Kane, J. M. (2018). Mesophytic litter dampens flammability in fire‐excluded pyrophytic oak–hickory woodlands. Ecosphere, 9(1). https://doi.org/10.1002/ecs2.2078
- Bigelow, S. W., & Whelan, A. W. (2019). Longleaf pine proximity effects on air temperatures and hardwood top-kill from prescribed fire. Fire Ecology, 15(1), 1–14. https://doi.org/10.1186/s42408-019-0039-7
- Varner, J. M., Kane, J. M., Kreye, J. K., & Engber, E. (n.d.). The Flammability of Forest and Woodland Litter: a Synthesis. https://doi.org/10.1007/s40725-015-0012-x
- Platt, W., G. W. Evans, and S. L. Rathbun. 1988. The population dynamics of a long-lived conifer (Pinus palustris). American Naturalist 131:491–525.
- Pecot, S. D., R. J. Mitchell, B. J. Palik, E. B. Moser, and J. K. Hiers. 2007. Competitive responses of seedlings and understory plants in longleaf pine woodlands: Separating canopy influences above and below ground. Canadian Journal of Forest Research 37:634–648.
- Provencher, L., A.R. Litt, D.R. Gordon, H.L. Rodgers, B.J. Herring, K.E.M. Galley, J.P. McAdoo, S.J. McAdoo, N.M. Gobris, and J.L. Hardesty (2001). Restoration, fire, and hurricanes inlongleaf pine snadhills. Ecological Restoration, 19(2), 92-98. http://www.montana.edu/litt/documents/Provencher%20et%20al%202001%20Ecol%20Rest.pdf
- Cox, A.C., D.R. Grodon, J.L. Slapcinsky, and G.S. Seamon. 2004. Understory restoration in longleaf pine sandhills. Natural Areas Journal 24(1). 4-14. http://www.naturalareas.org/docs/v24_1_04_pp004_014.pdf
- Ulanova, N.G., 2000. The effects of windthrow on forests at different spatial scales: A review. For. Ecol. Manage. 135, 155–167. https://doi.org/10.1016/S0378-1127(00)00307-8
- Everham, E.M., Brokaw, N.V.L., 1996. Forest damage and recovery from catastrophic wind. Bot. Rev. 62, 113–185. https://doi.org/10.1007/BF02857920
- Beatty, S. W. 1984. Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419.
- Cannon, J. B., C. J. Peterson, J. J. O’Brien, and J. S. Brewer. 2017. A review and classification of interactions between forest disturbance from wind and fire. Forest Ecology and Management 406:381–390.
- Peterson, C. J., J. B. Cannon, and C. M. Godfrey. 2016. First Steps Toward Defining the Wind Disturbance Regime in Central Hardwoods Forests. Pages 89–122 in C. H. Greenberg and B. S. Collins, editors. Natural Disturbances and Historic Range of Variation: Type, Frequency, Severity, and Post-disturbance Structure in Central Hardwood Forests, USA. Springer.
- Gilliam, F.S., Platt, W.J., Peet, R.K., 2006. Natural disturbances and the physiognomy of pine savannas: A phenomenological model. Appl. Veg. Sci. 9, 83–96. https://doi.org/10.1658/1402-2001(2006)9[83:NDATPO]2.0.CO;2
- O’Brien, J.J., Hiers, J.K., Callaham, Mac A., J., Mitchell, R.J., Jack, S.B., 2008. Interactions among overstory structure, seedling life-history traits, and fire in frequently burned neotropical pine forests. Ambio 37, 542–547. https://doi.org/10.1579/0044-7447-37.7.542
- Cooper–Ellis, S., Foster, D.R., Carlton, G., Lezberg, A., 1999. Forest response to catastrophic wind: Results from an experimental hurricane. Ecology 80, 2683–2696. https://doi.org/10.1890/0012-9658(1999)080[2683:FRTCWR]2.0.CO;2
- Rutledge, B. T., J. B. Cannon, R. K. McIntyre, A. M. Holland, and S. B. Jack. 2021. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. Forest Ecology and Management 481:118724.
- Peterson, C.J., 2007. Consistent influence of tree diameter and species on damage in nine eastern North America tornado blowdowns. For. Ecol. Manage. 250, 96–108. https://doi.org/10.1016/j.foreco.2007.03.013
- Peterson, C.J., J.B. Cannon, C.M. Godfrey, 2016. First steps toward defining the wind disturbance regime in Central Hardwoods forests. In Greenberg and Collins, Natural Disturbacnes and Historic Range of Variation. Springer Link https://link.springer.com/chapter/10.1007/978-3-319-21527-3_5
- Chambers, J.Q., Fisher, J.I., Zeng, H., Chapman, E.L., Baker, D.B., Hurtt, G.C., 2007. Hurricane Katrina’s carbon footprint. Science (80-. ). 318, 2. https://doi.org/10.1126/science.1148913
- Canham, C.D., Papaik, M.J., Latty, E.F., 2001. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 31, 1–10. https://doi.org/10.1139/x00-124
- Dale, V.H., Joyce, L.A., McNulty, S., Neilson, R.P., Ayres, M.P., Flannigan, M.D., Hanson, P.J., Irland, L.C., Lugo, A.E., Peterson, C.J., Simberloff, D., Swanson, F.J., Stocks, B.J., Wotton, B.M., 2001. Climate change and forest disturbances. Bioscience 51, 723.
- Chambers, J. Q., J. I. Fisher, H. Zeng, E. L. Chapman, D. B. Baker, and G. C. Hurtt. 2007. Hurricane Katrina’s carbon footprint. Science 318:2.McNab, W. H., C. H. Greenberg, and E. C. Berg. 2004. Landscape distribution and characteristics of large hurricane-related canopy gaps in a southern Appalachian watershed. Forest Ecology and Management 196:435–447.
- McNab, W. H., C. H. Greenberg, and E. C. Berg. 2004. Landscape distribution and characteristics of large hurricane-related canopy gaps in a southern Appalachian watershed. Forest Ecology and Management 196:435–447.
- Myers, R. K., and D. H. Van Lear. 1998. Hurricane-fire interactions in coastal forests of the south: A review and hypothesis. Forest Ecology and Management 103:265–276.
- Wang, F., and Y. J. Xu. 2009. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale. Environmental Monitoring and Assessment 156:491–507.
- Dahal, D., S. Liu, and J. Oeding. 2014. The carbon cycle and hurricanes in the United States between 1900 and 2011. Scientific Reports 4:5197.
- Rutledge, B. T., J. B. Cannon, R. K. McIntyre, A. M. Holland, and S. B. Jack. 2021. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. Forest Ecology and Management 481:118724.
- Zenoble M.D., Peterson, C.J., 2017. Remotely visible width and discontinuity of 50 tornado damage paths through forested landscapes. Electron. J. Sev. Storms Meteorol. 12, 1–21.
- Cannon, J. B., J. Hepinstall-Cymerman, C. M. Godfrey, and C. J. Peterson. 2016. Landscape-scale characteristics of forest tornado damage in mountainous terrain. Landscape Ecology 31:2097–2114.
- St. Peter, J., C. Anderson, J. Drake, and P. Medley. 2020. Spatially Quantifying Forest Loss at Landscape-scale Following a Major Storm Event. Remote Sensing 12:1138.
- Koukoulas, S., and G. A. Blackburn. 2004. Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS. International Journal of Remote Sensing 25:3049–3072.
- Falkowski, M. J., J. S. Evans, S. Martinuzzi, P. E. Gessler, and A. T. Hudak. 2009. Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment 113:946–956.
- Vepakomma, U., B. St-Onge, and D. Kneeshaw. 2008. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sensing of Environment 112:2326–2340.
- Kane, V. R., B. N. Bartl-Geller, M. P. North, J. T. Kane, J. M. Lydersen, S. M. A. Jeronimo, B. M. Collins, and L. Monika Moskal. 2019. First-entry wildfires can create opening and tree clump patterns characteristic of resilient forests. Forest Ecology and Management 454:117659.
- Foster, D.R., Knight, D.H., Franklin, J.F., 1998. Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems 1, 497–510. https://doi.org/10.1007/s100219900046
- Lindemann, J., Baker, W., 2001. Attributes of blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landsc. Ecol. 16, 313–325.
- Foster, D., Boose, E., 1992. Patterns of forest damage resulting from catastrophic wind in central New England, USA. J. Ecol. 80, 79–98.
- Turner (2001), "Quantifying landscape pattern" Chapter 3 In: Landscape Ecology in Theory and Practice, Turner, Gardner, O'Neill. Springer,
- Lidar Basics: https://www.neonscience.org/lidar-basics
- Vepakomma, U., St-Onge, B., Kneeshaw, D., 2008. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sens. Environ. 112, 2326–2340. https://doi.org/10.1016/j.rse.2007.10.001
- Koukoulas, S., Blackburn, G.A., 2004. Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS. Int. J. Remote Sens. 25, 3049–3072. https://doi.org/10.1080/01431160310001657786
- Myers, R.K., Van Lear, D.H., 1998. Hurricane–fire interactions in coastal forests of the south: A review and hypothesis. For. Ecol. Manage. 103, 265–276. https://doi.org/10.1016/S0378-1127(97)00223-5
- Cannon, J.B., Peterson, C.J., O’Brien, J.J., Brewer, J.S., 2017. A review and classification of interactions between forest disturbance from wind and fire. For. Ecol. Manage. 406, 381–390.
- Finco, M., Quayle, B., Zhang, Y., Lecker, J., Megown, K. a., Brewer, C.K., 2012. Monitoring Trends and Burn Severity (MTBS): Monitoring wildfire activity for the past quarter century using LANDSAT data. Mov. from Status to Trends For. Invent. Analysis Symp. 222–228.
- Cannon, J.B., O’Brien, J.J., Loudermilk, E.L., Dickinson, M.B., Peterson, C.J., 2014. The influence of experimental wind disturbance on forest fuels and fire characteristics. For. Ecol. Manage. 330, 294–303.
- Harvey, B.J., Donato, D.C., Turner, M.G., 2016. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology 97, 2272–2282.
- Buma, B., Wessman, C.A., 2012. Differential species responses to compounded perturbations and implications for landscape heterogeneity and resilience. For. Ecol. Manage. 266, 25–33.
- Cannon, J.B., Hepinstall-Cymerman, J., Godfrey, C.M., Peterson, C.J., 2016. Landscape-scale characteristics of forest tornado damage in mountainous terrain. Landsc. Ecol. 31, 2097–2114.
- Turner, M.G., Hargrove, W.W., Gardner, R.H., Romme, W.H., 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5, 731–742.
- Grubb, PJ. 1977. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52(1), pp. 107-145.
- Zellweger, F., P. de Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, M. Bernhardt-Römermann, L. Baeten, R. Hédl, I. Berki, J. Brunet, H. van Calster, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M. Kopecký, F. Máliš, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, A. Ortmann-Ajkai, P. Petřík, R. Pielech, K. Reczynska, W. Schmidt, T. Standovár, K. Swierkosz, B. Teleki, O. Vild, M. Wulf, and D. Coomes. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368:772–775.
- Ma, S., A. Concilio, B. Oakley, M. North, and J. Chen. 2010. Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. Forest Ecology and Management 259:904–915.
- Wickert, A. D., C. T. Sandell, B. Schulz, and G.-H. C. G. H. C. Ng. 2019. Open-source Arduino-compatible data loggers designed for field research. Hydrology and Earth System Sciences 23:2065–2076.
- Bitella, G., et al., 2014. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors 14: 19639-19659.
- Fisher D.K., and Gould, P.J., 2012. Open-source hardware is a low-cost alternative for scientific instrumentation and research. Modern Instrumentation 1: 8-20.
- Kizito, F., et al. 2008. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology 352: 367-378.
- Ogbu, K.N., et al. 2016. Development and testing of a capacitive digital soil moisture metre. Nigerian Journal of Technology 35: 686-693.
Individual-based frameworks for ecological processes
- Janzen, D. H. Herbivores and the Number of Tree Species in Tropical Forests. Am. Nat. 104, 501–528 (1970).
- Connell, J.H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations'. (Oosterbeek, Netherlands) 298-312
- Packer, A. & Clay, K. Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology 84, 108–119 (2003).
- Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404, 278–281 (2000).
- Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).
- Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404, 278–281 (2000).
- Uriarte, M., Canham, C. D., Thompson, J. & Zimmerman, J. K. A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecol. Monogr. 74, 591–614 (2004).
- Canham, C. D. et al. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecol. Appl. 16, 540–554 (2006).
- Pacala, S. W., Canham, C. D., Silander Jnr, J. A. & Kobe, R. K. Sapling growth as a function of resources in a north temperate forest. Can. J. For. Res. 24, 2172–2183 (1994).
- Canham, C. D. & Uriarte, M. Analysis of neighborhood dynamics of forest ecosystems using likelihood methods and modeling. in Ecological Applications vol. 16 62–73 (2006).
- Gómez-Aparicio, L., Canham, C. D. & Martin, P. H. Neighbourhood models of the effects of the invasive Acer platanoides on tree seedling dynamics: Linking impacts on communities and ecosystems. J. Ecol. 96, 78–90 (2008).
- Boyden, S., Montgomery, R., Reich, P. B. & Palik, B. Seeing the forest for the heterogeneous trees: Stand-scale resource distributions emerge from tree-scale structure. Ecol. Appl. 22, 1578–1588 (2012).
- Boyden, S. & Binkley, D. The effects of soil fertility and scale on competition in ponderosa pine. Eur. J. For. Res. 135, 1–8 (2015).
- Lopes, S. de F. Competition analysis using neighborhood models: Implications for plant community assembly rules. Ethnobiology and Conservation vol. 6 11 (2017).
- Greene, D. F., Canham, C. D., Coates, K. D. & Lepage, P. T. An evaluation of alternative dispersal functions for trees. J. Ecol. 92, 758–766 (2004).
- MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).
- Staelens, J., Nachtergale, L., Luyssaert, S. & Lust, N. A model of wind-influenced leaf litterfall in a mixed hardwood forest. Can. J. For. Res. 33, 201–209 (2003).
- Nickmans, H., Jonard, M., Verheyen, K. & Ponette, Q. Modelling leaf dispersal and nutrient return in tree species mixtures. For. Ecol. Manage. 436, 68–78 (2019).
- Ferrari, J. B. & Sugita, S. A spatially explicit model of leaf litter fall in hemlock-hardwood forests. Can. J. For. Res. 26, 1905–1913 (1996).
- Clark, J. S., Silman, M., Kern, R., Macklin, E. & Hillerislambers, J. Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).
- Kot, M., Lewis, M. A. & Van Den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996).
- Bigelow, S. W., and A. W. Whelan. 2019. Longleaf pine proximity effects on air temperatures and hardwood top-kill from prescribed fire. Fire Ecology 15:1–14.
- O’Brien, J. J., Hiers, J. K., Callaham, Mac A., J., Mitchell, R. J., & Jack, S. B. (2008). Interactions among overstory structure, seedling life-history traits, and fire in frequently burned neotropical pine forests. Ambio, 37(7–8), 542–547. https://doi.org/10.1579/0044-7447-37.7.542
- Hirabuki 1991. Heterogeneous dispersal of tree litterfall corresponding with patchy canopy structure in a temperate mixed forest. Plant ecology. , 1991, Vol.94(1), p.69 [[Can't currently get access to this one ]]
- Jonard, M., Andre, F., & Ponette, Q. (2006). Modeling leaf dispersal in mixed hardwood forests using a ballistic approach. Ecology, 87(9), 2306–2318. https://doi.org/10.1890/0012-9658(2006)87[2306:MLDIMH]2.0.CO;2
- Sanchez Meador, A. J., Moore, M. M., Bakker, J. D., Parysow, P. F., Sánchez Meador, A. J., Moore, M. M., … Parysow, P. F. (2009). 108 years of change in spatial pattern following selective harvest of a Pinus ponderosa stand in northern Arizona. Journal of Vegetation Science, 20(1), 79–90. https://doi.org/10.1111/j.1654-1103.2009.05464.x
- Liu, J. P., Burkhart, H. E., & Amateis, R. L. (1995). Projecting crown measures for loblolly pine trees using a generalized thinning response function. Forest Science, 41(1), 43–53. https://doi.org/10.1093/forestscience/41.1.43
- Sprinz, P. T., & Burkhart, H. E. (1987). Relationships between tree crown, stem, and stand characteristics in unthinned loblolly pine plantations. Canadian Journal of Forest Research, 17(6), 534–538. https://doi.org/10.1139/x87-089
- Zeide, B. (1998). Fractal analysis of foliage distribution in loblolly pine crowns. Canadian Journal of Forest Research, 28(1), 106–114. https://doi.org/10.1139/x97-202
- Roberts, S. D., Dean, T. J., Evans, D. L., McCombs, J. W., Harrington, R. L., & Glass, P. A. (2005). Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. Forest Ecology and Management, 213(1–3), 54–70. https://doi.org/10.1016/j.foreco.2005.03.025
- Ferraz, A., Saatchi, S., Mallet, C., & Meyer, V. (2016). Lidar detection of individual tree size in tropical forests. Remote Sensing of Environment, 183, 318–333. https://doi.org/10.1016/j.rse.2016.05.028
- Moorthy, I., Miller, J. R., Hu, B., Chen, J., & Li, Q. (2008). Retrieving crown leaf area index from an individual tree using ground-based lidar data. Canadian Journal of Remote Sensing, 34(3), 320–332. https://doi.org/10.5589/m08-027
- Peltola, H. M. (2006). Mechanical stability of trees under static loads. American Journal of Botany, 93(10), 1501–1511. https://doi.org/10.3732/ajb.93.10.1501
- James, K. R., Haritos, N., & Ades, P. K. (2006). Mechanical stability of trees under dynamic loads. American Journal of Botany, 93(10), 1522–1530. https://doi.org/10.3732/ajb.93.10.1522