-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOverlap.c
268 lines (236 loc) · 10.8 KB
/
Overlap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include "FFTSVDpbeAPI.h"
#include "PBEproblem.h"
#include "Overlap.h"
void Solv_ecf_qual_writematlabfile(char *filename, Tree tree) {
unsigned int i,j;
Vector x = Vector_allocate(tree->numpanels);
Vector ans = Vector_allocate(tree->numpoints);
FILE* file = NULL;
file = fopen(filename, "w");
fprintf(file, "A = zeros(%u, %u);\n", tree->numpanels, tree->numpoints);
fprintf(file, "A = [\n");
for (i = 0; i < tree->numpanels; i++) {
Vector_zero(x, tree->numpanels);
x[i] = 1.0;
Solv_ecf_multiply_qual(ans, tree, x, 4, 80);
for (j = 0; j < tree->numpoints; j++)
fprintf(file, "%e ", ans[j]);
fprintf(file, "\n");
}
fprintf(file, "]';\n");
Vector_free(x);
Vector_free(ans);
}
void Preconditioner_fill_overlap_get_adjacent_cubes(Cube cube, unsigned int *numadj,
Cube **adjcubes) {
unsigned int i, j, delta;
unsigned int dx, dy, dz;
*numadj = 1;
for (i = 0; i < cube->numlocalcubes; i++) {
dx = abs(cube->indices[0] - cube->localcubes[i]->indices[0]);
dy = abs(cube->indices[1] - cube->localcubes[i]->indices[1]);
dz = abs(cube->indices[2] - cube->localcubes[i]->indices[2]);
if (( dx <= 1 ) && ( dy <= 1) && (dz <= 1))
*numadj = *numadj + 1;
}
*adjcubes = (Cube *)calloc(*numadj, sizeof(Cube));
(*adjcubes)[0] = cube;
j = 1;
for (i = 0; i < cube->numlocalcubes; i++) {
dx = abs(cube->indices[0] - cube->localcubes[i]->indices[0]);
dy = abs(cube->indices[1] - cube->localcubes[i]->indices[1]);
dz = abs(cube->indices[2] - cube->localcubes[i]->indices[2]);
if (( dx <= 1 ) && ( dy <= 1) && (dz <= 1)) {
(*adjcubes)[j] = cube->localcubes[i];
j++;
}
}
}
void Preconditioner_fill_overlap_recurse(Preconditioner preconditioner, Cube cube, Panel *panels,
real idiel, real odiel) {
unsigned int cx, cy, cz;
SMatrix Psub, Psubinv;
unsigned int numlocalpoints = 0;
unsigned int numlocalpanels = 0;
unsigned int numalllocal;
Cube *alllocalcubes;
unsigned int i, j, curpanel;
unsigned int curStartCol, curStartRow, curcol;
unsigned int localSrc, localDest;
sreal *diag, *areas;
Cube srccube, destcube;
if (cube->leaf) {
Preconditioner_fill_overlap_get_adjacent_cubes(cube, &numalllocal, &(alllocalcubes));
for (i = 0; i < numalllocal; i++) {
numlocalpoints += alllocalcubes[i]->numpointindices;
numlocalpanels += alllocalcubes[i]->numpanelindices;
}
Psub = SMatrix_allocate(numlocalpoints, numlocalpanels);
Psubinv = SMatrix_allocate(numlocalpoints, numlocalpanels);
diag = (sreal *)calloc(numlocalpoints, sizeof(sreal));
areas = (sreal *)calloc(numlocalpanels, sizeof(sreal));
curpanel = 0;
for (i = 0; i < numalllocal; i++) {
for (j = 0; j < alllocalcubes[i]->numpanelindices; j++)
areas[curpanel++] = (sreal) panels[alllocalcubes[i]->panelindices[j]]->area;
}
// fill submatrix Psub, of P for all localcubes interacting with all local cubes
curStartRow = 0;
// printf("numalllocal = %d\n", numalllocal);
for (localDest = 0; localDest < numalllocal; localDest++) {
destcube = alllocalcubes[localDest];
curStartCol = 0;
for (localSrc = 0; localSrc < numalllocal; localSrc++) {
srccube = alllocalcubes[localSrc];
curcol = destcube->numpanelindices;
for (i = 0; i < destcube->numlocalcubes; i++) {
if (srccube == destcube->localcubes[i]) {
SMatrix_copypiece(Psub, curStartRow, curStartCol,
destcube->D_double, 0, curcol,
destcube->numpointindices, srccube->numpanelindices);
}
curcol += destcube->localcubes[i]->numpanelindices;
}
// if we've gotten this far, destcube and srccube are "well separated" via local = 1;
for (i = 0; i < destcube->numinteractingcubes; i++) {
if (srccube == destcube->interactingcubes[i]) {
SMatrix nearbyCompressedMat = SMatrix_allocate(destcube->numpointindices, srccube->numpanelindices);
Preconditioner_do_leaf_leaf_translation(nearbyCompressedMat, destcube, srccube);
SMatrix_copypiece(Psub, curStartRow, curStartCol,
nearbyCompressedMat, 0, 0,
destcube->numpointindices, srccube->numpanelindices);
SMatrix_free(nearbyCompressedMat);
}
}
curStartCol += srccube->numpanelindices;
}
curStartRow += destcube->numpointindices;
}
curStartCol = 0;
for (localSrc = 0; localSrc < numalllocal; localSrc++) {
srccube = alllocalcubes[localSrc];
SMatrix_copypiece(Psub, curStartCol, curStartCol,
srccube->D_double, 0, 0,
srccube->numpointindices, srccube->numpanelindices);
curStartCol += srccube->numpanelindices;
}
// subtract diagonal
for (i = 0; i < numlocalpoints; i++) {
diag[i] = Psub[i][i];
Psub[i][i] = 0.0;
}
// scale by areas (here we do row scaling because we haven't
// transposed the double layer operator yet)
for (i = 0; i < numlocalpoints; i++)
SVector_scale(Psub[i], areas[i] / (4.0 * M_PI * idiel), numlocalpoints);
// transpose
SMatrix_transpose(&Psub, numlocalpoints, numlocalpanels);
// put correct stuff on diagonal
// this will break for cavities, need to handle with care like in solv_ecf...
for (i = 0; i < numlocalpoints; i++)
Psub[i][i] = (-odiel / ((odiel - idiel) * idiel) + (diag[i]) / (4.0*M_PI*idiel)) * areas[i];
// SMatrix_writefile("Psub.m", Psub, numlocalpoints, numlocalpanels);
// invert Psub
SMatrix_pseudoinverse(Psubinv, Psub, numlocalpoints, numlocalpanels);
// get rows of Psub corresponding to panels in me
for (i = 0; i < cube->numpointindices; i++) {
curpanel = 0;
for (j = 0; j < numalllocal; j++) {
for (curcol = 0; curcol < alllocalcubes[j]->numpanelindices; curcol++) {
Preconditioner_set(preconditioner, cube->pointindices[i],
alllocalcubes[j]->panelindices[curcol],
(real)Psubinv[i][curpanel++]);
}
}
}
/* printf("Indices: "); */
/* for (i = 0; i < cube->numpointindices; i++) { */
/* curpanel = 0; */
/* printf("%d ", cube->pointindices[i]); */
/* for (j = 0; j < numalllocal; j++) { */
/* for (curcol = 0; curcol < alllocalcubes[j]->numpanelindices; curcol++) { */
/* printf("%d ", alllocalcubes[j]->panelindices[curcol]); */
/* } */
/* } */
/* printf("\n"); */
/* } */
/* exit(-1); */
// clean up, go home
SMatrix_free(Psub);
SMatrix_free(Psubinv);
free(alllocalcubes);
free(diag);
free(areas);
} else {
for (cx = 0; cx <= 1; cx++)
for (cy = 0; cy <= 1; cy++)
for (cz = 0; cz <= 1; cz++)
if (cube->children[cx][cy][cz] != NULL)
Preconditioner_fill_overlap_recurse(preconditioner, cube->children[cx][cy][cz],
panels, idiel, odiel);
}
}
// this is stolen out of a bunch of functions in Cube.c
void Preconditioner_do_leaf_leaf_translation(SMatrix mat, Cube cube, Cube srccube) {
unsigned int i, j;
ComplexSVector**** Tprecomputed = cube->tree->Tprecomputed;
unsigned int halfdimension = 1 + 2 * LOCAL;
int dx = cube->indices[0] - srccube->indices[0];
int dy = cube->indices[1] - srccube->indices[1];
int dz = cube->indices[2] - srccube->indices[2];
SVector q = SVector_allocate(srccube->numpanelindices);
SMatrix matT = SMatrix_allocate(srccube->numpanelindices, cube->numpointindices);
unsigned int* gridpoints = cube->tree->gridpointsperlevel;
unsigned int padgridsize = (2*gridpoints[cube->level]-1)*(2*gridpoints[cube->level]-1)*((2*gridpoints[cube->level]-1)/2+1);
unsigned int gp3 = gridpoints[cube->level]*gridpoints[cube->level]*gridpoints[cube->level];
SVector VT_q = SVector_allocate(srccube->rowrank);
SVector PV_VT_q = SVector_allocate(gp3);
SVector IFFT_sum_T_FFT_PV_VT_q = SVector_allocate(gp3);
SVector UTI_IFFT_sum_T_FFT_PV_VT_q = SVector_allocate(cube->columnrank);
ComplexSVector T = Tprecomputed[cube->level][dx+halfdimension][dy+halfdimension][dz+halfdimension];
for (j = 0; j < srccube->numpanelindices; j++) {
SVector_zero(VT_q, srccube->rowrank);
SVector_zero(PV_VT_q, gp3);
ComplexSVector_zero(srccube->FFT_PV_VT_q, padgridsize);
ComplexSVector_zero(cube->sum_T_FFT_PV_VT_q, padgridsize);
SVector_zero(IFFT_sum_T_FFT_PV_VT_q, gp3);
SVector_zero(UTI_IFFT_sum_T_FFT_PV_VT_q, cube->columnrank);
SVector_zero(q, srccube->numpanelindices);
q[j] = 1.0;
SMatrix_multiplyvector(VT_q, srccube->VTsrc, q, srccube->rowrank, srccube->numpanelindices);
SMatrix_multiplyvector(PV_VT_q, srccube->PV_double, VT_q, gp3, srccube->rowrank);
FFT_forwardGridTransform(cube->level, gridpoints[cube->level], PV_VT_q, srccube->FFT_PV_VT_q);
ComplexSVector_addelementmultiplyvector(cube->sum_T_FFT_PV_VT_q, T, srccube->FFT_PV_VT_q, padgridsize);
FFT_backwardGridTransform(cube->level, gridpoints[cube->level], cube->sum_T_FFT_PV_VT_q, IFFT_sum_T_FFT_PV_VT_q);
SMatrix_multiplyvector(UTI_IFFT_sum_T_FFT_PV_VT_q, cube->UTI, IFFT_sum_T_FFT_PV_VT_q, cube->columnrank, gp3);
SMatrix_multiplyvector(matT[j], cube->Udest, UTI_IFFT_sum_T_FFT_PV_VT_q, cube->numpointindices, cube->columnrank);
}
SVector_free(IFFT_sum_T_FFT_PV_VT_q);
SVector_free(UTI_IFFT_sum_T_FFT_PV_VT_q);
SMatrix_transpose(&matT, srccube->numpanelindices, cube->numpointindices);
SMatrix_copy(mat, matT, cube->numpointindices, srccube->numpanelindices);
SVector_free(q);
SMatrix_free(matT);
}
void Preconditioner_fill_overlap_ecf_qual_cav(Preconditioner preconditioner, Tree tree,
Panel* panels, unsigned int numpoints, unsigned int numpanels,
real idiel, real odiel) {
if (LOCAL != 1) {
printf("Preconditioner_fill_overlap_ecf_qual_cav:\n");
printf("\tneeds to be compiled with LOCAL = 1 for now!\n");
exit(-1);
}
Preconditioner_fill_overlap_recurse(preconditioner, tree->root, panels, idiel, odiel);
}
void Preconditioner_multiply(Vector Px, Preconditioner preconditioner, Vector x, unsigned int numpanels) {
unsigned int i, j;
Vector_zero(Px, numpanels);
for (i = 0; i < numpanels; i++) {
/* printf("%d nonzero elements in row\n", preconditioner->numelements[i]); */
for (j = 0; j < preconditioner->numelements[i]; j++) {
/* printf("%f ", preconditioner->P[i][j].value); */
Px[preconditioner->P[i][j].row] += preconditioner->P[i][j].value * x[i];
}
/* printf("\n"); */
}
}