This repository has been archived by the owner on Jul 5, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
executable file
·245 lines (185 loc) · 7.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#--------------------------------------------------------------------------------------------------------------------------------
# Initial Considerations
#--------------------------------------------------------------------------------------------------------------------------------
# Samples are collected on the server every ten minutes (144 samples/day)
# Imports
#--------------------------------------------------------------------------------------------------------------------------------
# Libraries and custom classes
import re
import os
import sys
import numpy as np
from datetime import datetime
import datetime
from pandas import concat,DataFrame
import csv
from pandas import concat,DataFrame
import pandas.core.frame # read_csv
from numpy import concatenate
from keras.models import load_model
from sklearn.preprocessing import LabelEncoder
from urllib.request import Request, urlopen # Python 3
class Utils:
city = ""
dir_pat = "" # Current working directory
def __init__(self, city=""):
if len(city) == 0:
sys.exit("Missing city in the initialization")
self.dir_path = os.path.dirname(os.path.realpath(__file__))
self.city = city
def read(self, param):
with open(self.dir_path + "/config/" + param) as f:
content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
content = [int(x.strip()) for x in content]
return content
def stations_from_web(self, city):
'''
Parse the JSON/XML feed and return the staions
- Returns: Pandas Dataframe [idStation, stationName, latitude, longitude]
'''
import urllib
import json
import time
import codecs
import requests
urls = {"Barcelona": "http://api.citybik.es/v2/networks/bicing",
"Santander": "https://api.jcdecaux.com/vls/v1/stations?contract=Santander&apiKey=9fcde589b2071fa7895969c4f0a186f2beb6ac84",
"New_York": "https://gbfs.citibikenyc.com/gbfs/en/station_information.json",
"Berlin": "https://api.nextbike.net/maps/nextbike-live.json?city=362",
"Paris": "https://velib-metropole-opendata.smoove.pro/opendata/Velib_Metropole/station_information.json",
"Bilbao": "https://nextbike.net/maps/nextbike-official.json?city=532",
"Chicago": "https://layer.bicyclesharing.net/map/v1/chi/map-inventory",
"Bilbao": "https://nextbike.net/maps/nextbike-official.json?city=532",
"London": "https://api.tfl.gov.uk/BikePoint",
"Madrid": "https://openapi.emtmadrid.es/v1/transport/bicimad/stations/",
"Vienna": "http://api.citybik.es/v2/networks/citybike-wien"}
# Filter and only show the stations, the feeds contain more data than necessary.
if city == "Bilbao" or city == "Berlin":
data = requests.get(urls[city]).json()
data = data["countries"][0]["cities"][0]["places"]
elif city == "Chicago":
data = requests.get(urls[city]).json()
data = data["features"]
elif city == "Madrid":
url_login = "https://openapi.emtmadrid.es/v1/mobilitylabs/user/login/"
req = Request(url_login)
req.add_header('email','javierdemartin@me.com')
req.add_header('password','zXF2AbQt7L6#')
req.add_header('X-ApiKey','76eb9ed5-25b6-4e57-a905-71d4ac2ecdf2')
req.add_header('X-ClientId','f64bb631-8b03-426d-a1e3-9939a571003a')
content = urlopen(req).read()
content = json.loads(content)
accessToken = content['data'][0]['accessToken']
url_stations = "https://openapi.emtmadrid.es/v1/transport/bicimad/stations/"
req2 = Request(url_stations)
req2.add_header('accessToken', accessToken)
content = urlopen(req2).read()
data = json.loads(content)['data']
elif city== "New_York" or city == "Paris":
data = requests.get(urls[city]).json()
data = data["data"]['stations']
elif city== "Barcelona":
data = requests.get(urls[city]).json()
data = data["network"]["stations"]
elif city == "London":
data = requests.get(urls[city]).json()
elif city== "Vienna":
data = requests.get(urls[city]).json()
data = data["network"]["stations"]
feedKeywords = {"Santander": ["number", "name", "lat", "lng"],
"Chicago": ["id", "stationName", "latitude", "longitude"],
"Bilbao": ["uid", "name", "lat", "lng"],
"Berlin": ["uid", "name", "lat", "lng"],
"Madrid": ["id", "name", "geometry"],
"New_York": ["station_id", "name", "lat", "lon"],
"Paris": ["station_id", "name", "lat", "lon"],
"Barcelona": ["id", "name", "latitude", "longitude"],
"Vienna": ["id", "name", "latitude", "longitude"],
"London": ["id", "commonName", "lat", "lon"]
}
if city == "Madrid":
idVAR = feedKeywords[city][0]
nameVAR = feedKeywords[city][1]
latVAR = feedKeywords[city][2] #["coordinates"][0]
lonVAR = feedKeywords[city][2] #["coordinates"][1]
else:
idVAR = feedKeywords[city][0]
nameVAR = feedKeywords[city][1]
latVAR = feedKeywords[city][2]
lonVAR = feedKeywords[city][3]
query = ""
totalQuery = ""
current_time = time.strftime('%Y-%m-%dT%H:%M:%SZ',time.localtime(time.time()))
totalQuery += "idstation,nom,lat,lon\n"
pre_df = []
for i in data:
totalQuery += query
if city == "Madrid":
identifier = str(i[idVAR])
name = str(i[nameVAR])
latitude = str(i[latVAR]["coordinates"][1])
longitude = str(i[lonVAR]["coordinates"][0])
elif city == "Bilbao":
identifier = str(i[idVAR])
name = str(i[nameVAR])
latitude = str(i[latVAR])
longitude = str(i[lonVAR])
if re.search(r'\d\d-\w+', name):
name = name[3::]
elif city == "London":
identifier = str(i[idVAR])
name = str(i[nameVAR])
latitude = str(i[latVAR])
longitude = str(i[lonVAR])
elif city == "Chicago":
identifier = i['properties']['station']['id']
name = i["properties"]['station']['name']
latitude = i['geometry']['coordinates'][1]
longitude = i['geometry']['coordinates'][0]
elif city == "New_York" or city == "Paris":
identifier = str(i[idVAR])
name = str(i[nameVAR])
latitude = str(i[latVAR])
longitude = str(i[lonVAR])
pre_df.append([identifier, name, latitude, longitude])
df = DataFrame(pre_df, columns = ['idstation', 'nom', 'lat', 'lon'])
print("> There are " + str(df.shape[0]) + " stations in " + str(city))
return df
# Reads the list in the PATH and returns a LIST
def read_csv_as_list(self, path):
data = []
with open(path) as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
for row in readCSV:
data = row
return data
# Checks if de current directory exists, if not it's created
# Directory is a list of strings
def check_and_create(self, directory):
for path in directory:
if not os.path.exists(self.dir_path + path):
os.makedirs(self.dir_path + path)
# Save an array/list/... for future debugging
def save_array_txt(self, path, array):
# Guardar array con la función nativa de NumPy
if type(array) is np.ndarray:
np.savetxt(path, array, delimiter=',', fmt='%.0f')
# Guardar LabelEncoders como una lista con cada elemento codificado en una linea
elif type(array) is LabelEncoder:
f = open(path, 'w' )
for i in range(len(array.classes_)):
f.write('{:>4}'.format(i) + " " + str(array.classes_[i]) + "\n")
f.close()
elif type(array) is DataFrame:
array.to_csv(path, sep=',')
elif type(array) is list:
with open(path,"w+") as f:
wr = csv.writer(f,delimiter=",")
wr.writerow(array)
else:
with open(path, 'w+', newline='\n') as myfile:
for element in array:
myfile.write(str(element) + "\n")