-
Notifications
You must be signed in to change notification settings - Fork 0
/
Features.py
914 lines (800 loc) · 30.7 KB
/
Features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
#########################################################
# Features.py
# riesa@isi.edu (Jason Riesa)
# Feature Function Templates
#########################################################
from collections import defaultdict
from NLPTreeHelper import containsSpan
import sys
import hminghkm as minghkm
from pyglog import *
class LocalFeatures:
def __init__(self, pef, pfe):
self.null_token = "*NULL*"
self.pef = pef
self.pfe = pfe
self.punc = {',':True,'.':True,'!':True,'?':True,"'":True,'"':True,
')':True,'(':True,':':True,';':True,'-':True,'@':True}
# Chinese punctuation
self.punc[u'\u3002']=True # Chinese period
self.punc[u'\u201c']=True # Chinese quote
self.punc[u'\u201d']=True # Chinese quote
self.punc[u'\uff0c']=True # Chinese comma
self.punc[u'\u3001']=True # Chinese comma
self.punc[u'\uff0d']=True # Chinese dash
self.punc[u'\uff1f']=True # Chinese question mark
self.months = {'january':True, 'february':True,'march':True,'april':True,
'may':True,'june':True,'july':True,'august':True,
'september':True,'october':True,'november':True,
'december':True,
'jan':True,'feb':True,'mar':True,'apr':True,'jun':True,
'jul':True,'aug':True,'sep':True,'nov':True,'dec':True,
'jan.':True,'feb.':True,'mar.':True,'apr.':True,
'jun.':True,'jul.':True,'aug.':True,'sep.':True,
'nov.':True,'dec.':True}
def ff_thirdParty(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Fire feature if links appear in third-party alignments.
"""
values = { }
if len(links) == 0:
return values
name = self.ff_thirdParty.func_name
a1 = True
a2 = True
inverse = True
for link in links:
if link not in info['a1']:
a1 = False
if link not in info['a2']:
a2 = False
if link not in info['inverse']:
inverse = False
# Encode results as features
if inverse:
values[name+'_inv'] = 1
values[name+'_inv_%s' %(currentNode.data)] = 1
if a1:
values[name+'_a1'] = 1
values[name+'_a1_%s' %(currentNode.data)] = 1
if a2:
values[name+'_a2'] = 1
values[name+'_a2_%s' %(currentNode.data)] = 1
return values
def ff_probEgivenF(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Return average p(e|f)
"""
if currentNode is not None:
pos = currentNode.data
name = self.ff_probEgivenF.func_name + '___' + pos + '_nb'
# Calculate feature function value
sum = 0.0
numLinks = len(links)
if numLinks > 0:
for link in links:
fWord = info['f'][link[0]]
eWord = info['e'][link[1]]
sum += self.pef.get(fWord, {}).get(eWord, 0.0)
else:
sum = self.pef.get(fWord, {}).get(eWord, 0.0)
if numLinks > 1:
sum /= float(numLinks)
return {name: sum}
def ff_identity(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Return 1 if fWord == eWord; 0 otherwise.
"""
name = self.ff_identity.func_name
if len(links) == 1:
link = links[0]
CHECK_GT(len(info['f']), 0, "Length of f sentence is 0.")
CHECK_GT(len(info['e']), 0, "Length of e sentence is 0.")
if info['f'][link[0]] == info['e'][link[1]]:
return {name: 1.0}
return {name: 0.0}
def ff_distToDiag(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Average (Normalized) Distance from the point (fIndex,eIndex) to the grid diagonal
"""
if currentNode is not None:
pos = currentNode.data
name = self.ff_distToDiag.func_name + '___' + pos + '_nb'
val = 0.0
if len(links) > 0:
for link in links:
fIndex = link[0]
eIndex = link[1]
if diagValues.has_key((fIndex, eIndex)):
val += abs(diagValues[(fIndex, eIndex)])
else:
val += abs(self.pointLineGridDistance(info['f'], info['e'], fIndex, eIndex))
# Save value for later use.
diagValues[(fIndex, eIndex)] = val
val /= len(links)
return {name: val}
################################################################################
# ff_tgtTag_srcTag
################################################################################
def ff_tgtTag_srcTag(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Compute targetTag, srcTag indicator features.
We also lexicalize by the eWord.
Uncomment value3 below to include lexicalized features by fword.
"""
name = self.ff_tgtTag_srcTag.func_name
if currentNode.data == '_XXX_':
return {}
if info['ftree'] is None:
return {}
if len(info['ftree'].terminals) == 0:
return {}
tgtTag = currentNode.data
srcTags = ""
if len(links) == 0:
srcTags = "*NULL*"
else:
for link in links:
findex = link[0]
try:
srcTags += (info['ftree'].getTerminal(findex).data+",")
except:
return {}
value1 = "%s:%s" %(tgtTag,srcTags)
value2 = "%s(%s):%s" %(tgtTag, eWord, srcTags)
# Uncomment to add feature lexicalized by fword
#value3 = "%s:%s(%s)" %(tgtTag, srcTags, fWord)
values = {}
values[name+'___'+value1] = 1
values[name+'___'+value2] = 1
# Uncomment to add feature lexicalized by fword
#values[name+'___'+value3] = 1
return values
def ff_englishCommaLinkedToNonComma(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires if eWord ',' is linked to a non-comma.
"""
name = self.ff_englishCommaLinkedToNonComma.func_name
if eWord == ',':
fwords = [info['f'][link[0]] for link in links]
for fword in fwords:
if eWord == ',' and fword != ',':
return {name: 1.0}
return {name: 0.0}
def ff_finalPeriodAlignedToNonPeriod(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires if last token in e-sentence is a period and is
aligned to a non-period.
"""
name = self.ff_finalPeriodAlignedToNonPeriod.func_name
if eIndex != len(eWord)-1 and fIndex != len(fWord)-1:
return {name: 0.}
if eWord == "." and fWord != ".":
return {name: 1.}
else:
return {name: 0.}
def ff_isLinkedToNullWord(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires if eWord is aligned to nothing.
"""
if currentNode is not None:
pos = currentNode.data
name = self.ff_isLinkedToNullWord.func_name + '___' + pos
if len(links) == 0:
return {name: 1.}
else:
return {name: 0.}
def ff_isPuncAndHasMoreThanOneLink(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires if eWord is punctuation and is aligned to more than
one f token.
"""
name = self.ff_isPuncAndHasMoreThanOneLink.func_name
if self.isPunctuation(eWord) and len(links) > 1:
return {name: 1.}
else:
return {name: 0.}
def ff_jumpDistance(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
When eWord is aligned to two or more fWords, return size of vertical gap
between the two links in the alignment matrix. Condition on POS.
For example, it's probably OK for an English IN to align to align to two
Chinese tokens spaced relatively far apart; it's probably not OK for the
same thing to happen with an English JJ.
We return features for distances of: 0, 1, 2, 3, >=4.
"""
# We assume that all links passed to this function will have the same eIndex
# Only the fIndex will vary.
if currentNode is not None:
pos = currentNode.data
name = self.ff_jumpDistance.func_name + '___' + pos + '_nb'
maxdiff = 0
if len(links) <= 1:
return {name: 0}
for i, link1 in enumerate(links):
for link2 in links[i+1:i+2]:
diff = abs(link2[0]-link1[0])
if diff > maxdiff:
maxdiff = diff
features = defaultdict(int)
for i in range(min(maxdiff+1, 5)):
features[name+'_'+str(i)] = 1
return features
def ff_lexprob_zero(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Fire feature when we hypothesize a link that implies a translation not
found in our GIZA++ T-tables. This function turns out to be an interesting
barometer for how well we can trust GIZA++ alignments. We tend to learn
strong negative weights here for links involving eWords with POS tags
indicative of content words (e.g. NNP, NN, JJ, NNS, VBG), and weights
closer to zero for links involving eWords with POS tags indicative of
function words, e.g. (TO, WP$, CC, ").
"""
if currentNode is not None:
pos = currentNode.data
name = self.ff_lexprob_zero.func_name + '___' + pos + '_nb'
# Calculate feature function value
val = 0.0
numLinks = len(links)
if numLinks > 0:
for link in links:
fWord = info['f'][link[0]]
eWord = info['e'][link[1]]
val = (self.pef.get(fWord, {}).get(eWord, 0.0) +
self.pfe.get(eWord, {}).get(fWord, 0.0))
if val == 0:
return {name: 1.0}
return {name: 0.}
def ff_hminghkm(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Return translation rules rules extracted at this node encoded as features.
"""
if currentNode.data == '_XXX_':
return {}
name = self.ff_hminghkm.func_name
features = defaultdict(int)
start_span = currentNode.span_start()
end_span = currentNode.span_start()
l = [ ]
minf = len(info['f'])
maxf = 0
for link in links:
if link[1] >= start_span and link[1] <= end_span:
l.append((link[0], link[1]-start_span))
if link[0] < minf:
minf = link[0]
if link[0] > maxf:
maxf = link[0]
fsubset = info['f'][minf:maxf+1]
links_subset = [(link[0]-minf, link[1]) for link in l]
if len(links_subset) > 0:
for rule in minghkm.extract(fsubset,
currentNode,
links_subset,
start_span,
hierarchical=True):
# We only care about rules with root(LHS) = currentNode
try:
ruleRoot = rule.e.data
except:
# Probably a blank line or a bad rule?
continue
if ruleRoot != currentNode.data:
continue
rulestr = str(rule)
rulestr = rulestr.replace(" ","_")
features[name+'___'+rulestr] = 1
return features
def ff_nonPeriodLinkedToPeriod(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires when non-period eWord is linked to a period.
"""
name = self.ff_nonPeriodLinkedToPeriod.func_name
if eWord != '.':
fWords = [info['f'][link[0]] for link in links]
for fword in fWords:
if fword == '.':
return {name: 1.0}
return {name: 0.0}
def ff_nonfinalPeriodLinkedToComma(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires when non-final eWord '.' is linked to a comma.
"""
name = self.ff_nonfinalPeriodLinkedToComma.func_name
if eWord == '.' and eIndex is not len(info['e'])-1 and len(links) == 1 and fWord == ',':
return {name: 1.0}
else:
return {name: 0.0}
def ff_nonfinalPeriodLinkedToFinalPeriod(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires when non-final eWord '.' is aligned to
final fWord '.'
"""
name = self.ff_nonfinalPeriodLinkedToFinalPeriod.func_name
if eWord == '.' and eIndex is not len(info['e'])-1 and len(links) == 1 and fWord == '.' and fIndex == len(info['f'])-1:
return {name: 1.0}
else:
return {name: 0.0}
def ff_probEgivenF(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Return p(e|f)
"""
if currentNode is not None:
pos = currentNode.data
name = self.ff_probEgivenF.func_name + '___' + pos + '_nb'
# Calculate feature function value
sum = 0.0
numLinks = len(links)
if numLinks > 0:
for link in links:
fWord = info['f'][link[0]]
eWord = info['e'][link[1]]
sum += self.pef.get(fWord, {}).get(eWord, 0.0)
else:
sum = self.pef.get(fWord, {}).get(eWord, 0.0)
if numLinks > 1:
sum /= float(numLinks)
return {name: sum}
def ff_probFgivenE(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Return p(f|e)
"""
if currentNode is not None:
pos = currentNode.data
name = self.ff_probFgivenE.func_name + '___' + pos + '_nb'
# Calculate feature function value
sum = 0.0
numLinks = len(links)
if numLinks > 0:
for link in links:
fWord = info['f'][link[0]]
eWord = info['e'][link[1]]
sum += self.pfe.get(eWord, {}).get(fWord, 0.0)
else:
sum = self.pfe.get(eWord, {}).get(fWord, 0.0)
if numLinks > 1:
sum /= float(numLinks)
return {name: sum}
def ff_quote1to1(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires when double-quote is linked to double-quote.
"""
name = self.ff_quote1to1.func_name
if len(links) == 1 and eWord == '"' and fWord == '"':
return {name: 1.}
else:
return {name: 0.}
def ff_sameWordLinks(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires when single eWord is linked to more than one fWord
of the same type.
"""
name = self.ff_sameWordLinks.func_name
if len(links) > 1:
linkedToWords = defaultdict(int)
for link in links:
fIndex = link[0]
eIndex = link[1]
fWord = info['f'][fIndex]
eWord = info['e'][eIndex]
linkedToWords[fWord] += 1
if linkedToWords[fWord] > 1:
return {name: 1.}
return {name: 0.}
def ff_unalignedNonfinalPeriod(self, info, fWord, eWord, fIndex, eIndex, links, diagValues, currentNode = None):
"""
Binary feature fires when non-final eWord '.' is unaligned.
"""
name = self.ff_unalignedNonfinalPeriod.func_name
if eWord == '.' and eIndex is not len(info['e'])-1 and len(links) == 0:
return {name: 1.0}
else:
return {name: 0.0}
def pointLineGridDistance(self, f, e, fIndex, eIndex):
"""
Compute distance to the diagonal of the alignment matrix.
"""
elen = float(len(e))
flen = float(len(f))
ySize = flen
xSize = elen
x = eIndex
y = fIndex
slope = ySize/xSize
perfectY = slope*x
distance = perfectY - y
# Return distance
normalizer = max(perfectY, ySize - perfectY)
normalizedDistance = distance/normalizer
val = normalizedDistance
return val
def isPunctuation(self, string):
"""
Return True if string is one of , . ! ? ' " ( ) : ; - @ etc
"""
return self.punc.has_key(string)
class NonlocalFeatures:
def __init__(self, pef, pfe):
self.null_token = "*NULL*"
self.pef = pef
self.pfe = pfe
self.punc = {',':True,'.':True,'!':True,'?':True,"'":True,'"':True,
')':True,'(':True,':':True,';':True,'-':True,'@':True}
# Chinese punctuation
#self.punc[u'\u3002']=True # Chinese period
#self.punc[u'\u201c']=True # Chinese quote
#self.punc[u'\u201d']=True # Chinese quote
#self.punc[u'\uff0c']=True # Chinese comma
#self.punc[u'\u3001']=True # Chinese comma
#self.punc[u'\uff0d']=True # Chinese dash
#self.punc[u'\uff1f']=True # Chinese question mark
def ff_nonlocal_dummy(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
Just a dummy feature. For debugging purposes only. Always returns a zero value.
"""
name = self.ff_nonlocal_dummy.func_name
return {name: 0}
def ff_nonlocal_crossb(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
Constellation features. An extension of the constellation features
of Liang et al. '06. These features fire for certain configuration of link
clusters as we combine two treenode spans.
"""
name = self.ff_nonlocal_crossb.func_name
values = {}
try:
edge1 = childEdges[0]
edge2 = childEdges[1]
edge1_maxF = edge1.boundingBox[1][0]
edge2_maxF = edge2.boundingBox[1][0]
edge2_minF = edge2.boundingBox[0][0]
edge1_minF = edge1.boundingBox[0][0]
# Case 0: Equal bounding boxes
# [ ] [ ]
# [ ] [ ]
if edge1_maxF == edge2_maxF and edge1_minF == edge2_minF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'0___'+value] = 1
# Case 1 (monotonic)
# [ ]
# [ ]
# [ ]
# [ ]
elif edge1_maxF < edge2_minF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'1___'+value] = 1
# Case 2 (reordered)
# [ ]
# [ ]
# [ ]
# [ ]
elif edge1_minF > edge2_maxF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'2___'+value] = 1
# Case 3
# [ ]
# [ ] [ ]
# [ ]
elif edge1_maxF >= edge2_minF and edge1_maxF < edge2_maxF and edge1_minF < edge2_minF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'3___'+value] = 1
# Case 4
# [ ]
# [ ] [ ]
# [ ] [ ]
# [ ]
elif edge1_minF >= edge2_minF and edge1_minF < edge2_maxF and edge1_maxF > edge2_maxF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'4___'+value] = 1
# Case 5 (1 shares top of 2)
# [ ] [ ]
# [ ]
elif edge1_minF == edge2_minF and edge1_maxF < edge2_maxF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'5___'+value] = 1
# Case 6 (1 shares bot of 2)
# [ ]
# [ ] [ ]
elif edge1_maxF == edge2_maxF and edge1_minF > edge2_minF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'6___'+value] = 1
# Case 7 (2 shares top of 1; same as 5 but diff bracketing)
# [ ] [ ]
# [ ]
elif edge2_minF == edge1_minF and edge2_maxF < edge1_maxF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'7___'+value] = 1
# Case 8 (2 shares bot of 1; same as 6 but diff bracketing)
# [ ]
# [ ] [ ]
elif edge2_maxF == edge1_maxF and edge2_minF > edge1_minF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'8___'+value] = 1
# Case 9 (1 wholly contained in 2)
# [ ]
# [ ] [ ]
# [ ]
elif edge1_minF > edge2_minF and edge1_maxF < edge2_maxF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'9___'+value] = 1
# Case 10 (2 wholly contained in 1)
# [ ]
# [ ] [ ]
# [ ]
elif edge2_minF > edge1_minF and edge2_maxF < edge1_maxF:
value = "%s(%s,%s)" %(treeNode.data,treeNode.children[0].data,treeNode.children[1].data)
values[name+'10___'+value] = 1
# else: dump links here to find out what cases we missed, if any
except:
return {}
return values
def ff_nonlocal_horizGridDistance(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
A distance metric quantifying horizontal distance between two links (f, i); (f, j)
d((f,i),(f,j)) = j - i
Necessary for sentence pairs with no etrees.
"""
name = self.ff_nonlocal_horizGridDistance.func_name + '_nb'
dist = 0.0
if len(linkedToWords) == 0:
return {name: 0.}
spanLength = float(srcSpan[1] - srcSpan[0])
for fIndex in linkedToWords:
if len(linkedToWords[fIndex]) < 2:
continue
else: # fIndex is aligned to at least two different eIndices
# compute distance in pairs: if list = [1,2,3], compute dist(1,2), dist(2,3)
for i, eIndex1 in enumerate(linkedToWords[fIndex]):
for _, eIndex2 in enumerate(linkedToWords[fIndex][i+1:i+2]):
dist += max(0.0,abs(eIndex2 - eIndex1)-1)/spanLength
dist /= len(linkedToWords)
return {name: dist}
def ff_nonlocal_isPuncAndHasMoreThanOneLink(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
Binary feature fires when fWord is punctuation token and is aligned
to more than one e token. In a good alignment, we expect this to happen
rarely or never.
"""
name = self.ff_nonlocal_isPuncAndHasMoreThanOneLink.func_name
val = 0.0
for fIndex in linkedToWords:
fWord = info['f'][fIndex]
if self.isPunctuation(fWord) and len(linkedToWords[fIndex]) > 1:
val += 1.0
return {name: val}
def ff_nonlocal_tgtTag_srcTag(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
Fire Source-target coordination features.
From (Riesa et al., 2011) Section 3.2.1.
"""
name = self.ff_nonlocal_tgtTag_srcTag.func_name
if treeNode.data == '_XXX_':
return {}
if info['ftree'] is None:
return {}
if len(info['ftree'].terminals) == 0:
return {}
tgtTag = treeNode.data
srcTag = ""
# Account for the null alignment case
if len(links) == 0:
value = "%s:%s" % (tgtTag, self.null_token)
return {name+'___'+value: 1}
minF = edge.boundingBox[0][0]
maxF = edge.boundingBox[1][0]
# Catch exception due to bad parse tree.
# Ignore error and continue.
try:
minFNode = info['ftree'].getTerminal(minF)
leftFTag = minFNode.data
rightFTag = info['ftree'].getTerminal(maxF).data
except:
return {}
if minF == maxF:
value = "%s:%s" % (tgtTag, leftFTag)
return {name+'___'+value: 1}
else:
fspan = (minF, maxF)
currentFNode = minFNode
while not containsSpan(currentFNode, fspan):
currentFNode = currentFNode.getParent()
srcTag = currentFNode.data
value1 = '%s:%s' % (tgtTag,srcTag)
value2 = '%s:%s(%s,%s)' % (tgtTag, srcTag, leftFTag, rightFTag)
return {name+'___'+value1: 1,
name+'___'+value2: 1}
def ff_nonlocal_hminghkm(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
Fire features for every translation rule extracted at the current node.
"""
name = self.ff_nonlocal_hminghkm.func_name
if len(links) == 0:
return {}
features = defaultdict(int)
start_span = treeNode.span_start()
end_span = treeNode.span_end()
l = [ ]
minf = len(info['f'])
maxf = 0
for link in links:
if link[1] >= start_span and link[1] <= end_span:
l.append((link[0], link[1]-start_span))
if link[0] < minf:
minf = link[0]
if link[0] > maxf:
maxf = link[0]
fsubset = info['f'][minf:maxf+1]
links_subset = [(link[0]-minf, link[1]) for link in l]
if len(links_subset) > 0:
for rule in minghkm.extract(fsubset, treeNode, links_subset, start_span, hierarchical=True):
try:
ruleRoot = rule.e.data
except:
# Probably a blank line or a bad rule?
continue
rulestr = str(rule)
rulestr = rulestr.replace(" ","_")
features[name+'___'+rulestr] = 1
return features
def ff_nonlocal_sameWordLinks(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
Fire feature when fWord linked to more than one eWord of the same type.
"""
name = self.ff_nonlocal_sameWordLinks.func_name
penalty = 0.0
if len(links) > 1:
for fIndex in linkedToWords:
if len(linkedToWords[fIndex]) < 2:
continue
eWords = defaultdict(int)
for eIndex in linkedToWords[fIndex]:
eWord = info['e'][eIndex]
eWords[eWord] += 1
penalty += sum([count-1 for count in eWords.values()])
# Normalize
penalty /= (tgtSpan[1] - tgtSpan[0] + 1)
return {name: penalty}
def ff_nonlocal_treeDistance1(self, info, treeNode, edge, links, srcSpan, tgtSpan, linkedToWords, childEdges, diagValues, treeDistValues):
"""
A distance metric quantifying "tree distance" between two links (f, i); (f, j)
"""
name = self.ff_nonlocal_treeDistance1.func_name + '_nb'
dist = 0.0
linkedToWords_copy = dict(linkedToWords)
if tgtSpan is None:
return {name: 0.}
tgtSpanDist = tgtSpan[1] - tgtSpan[0]
if tgtSpanDist == 0:
return {name: 0.}
for fIndex in linkedToWords_copy:
if len(linkedToWords_copy[fIndex]) < 2:
continue
else: # fIndex is aligned to at least two different eIndices
# compute distance in pairs: if list = [1,2,3], compute dist(1,2), dist(2,3)
# if list has length n, we will have n-1 distance computations
linkedToWords_copy[fIndex].sort()
listlength = len(linkedToWords_copy[fIndex])
for i in xrange(listlength-1):
# eIndex1 and eIndex2 will always be the smallest, and second-smallest indices, respectively.
eIndex1 = linkedToWords_copy[fIndex][0]
eIndex2 = linkedToWords_copy[fIndex][1]
linkedToWords_copy[fIndex] = linkedToWords_copy[fIndex][1:]
node1 = info['etree'].getTerminal(eIndex1).getParent()
node2 = info['etree'].getTerminal(eIndex2).getParent()
if treeDistValues.has_key((eIndex1, eIndex2)):
dist += treeDistValues[(eIndex1,eIndex2)]
else:
val = self.treeDistance1(info['etree'], node1, node2)
treeDistValues[(eIndex1,eIndex2)] = val
dist += val
dist /= tgtSpanDist
return {name: dist}
def ff_nonlocal_treeDistance2(self, info, treeNode, edge, links, srcSpan, tgtSpan):
"""
Another variant of tree-distance.
"""
dist = 0.0
linkedToWords = { }
for link in links:
fIndex = link[0]
eIndex = link[1]
if not linkedToWords.has_key(fIndex):
linkedToWords[fIndex] = [ ]
linkedToWords[fIndex].append(eIndex)
for fIndex in linkedToWords:
if len(linkedToWords[fIndex]) < 2:
return 0.0
else: # fIndex is aligned to at least two different eIndices
# compute distance in pairs: if list = [1,2,3],
# compute dist(1,2), dist(2,3)
for i, eIndex1 in enumerate(linkedToWords[fIndex]):
for _, eIndex2 in enumerate(linkedToWords[fIndex][i+1:i+2]):
node1 = info['etree'].getTerminal(eIndex1).getParent()
node2 = info['etree'].getTerminal(eIndex2).getParent()
dist += self.treeDistance2(info['etree'], node1, node2)
return dist
################################################################################
# treeDistance(self, node1, node2):
# Compute tree distance between two nodes in a tree
# distance = max_i(distance from node i to common ancestor)
# Variant 1: distance += 1 with each single move up the tree
# Variant 2: distance += (height(currentNode.parent) - height(currentNode))
# In the case of Variant 2, the distance is equivalent to height(commonAncestor)
################################################################################
def treeDistance1(self, etree, node1, node2):
units1 = 0
units2 = 0
distance = 0
skips1 = 0
skips2 = 0
# YCA = "youngest common ancestor" i.e., the node with minimal height that
# dominates both node1 and node2
# Compute number of hops from node 1 to the YCA and from node2 to the YCA
# Keep track of single-child non-perterminal nodes along each path and subtract the number
# we encounter from the total hops, e.g. in NPC(... NPB(NN(dog))) NPB is effectively skipped.
while (node1 is not node2):
node1depth = node1.depth()
node2depth = node2.depth()
if node1depth == node2depth:
node1 = node1.getParent()
node2 = node2.getParent()
units1 += 1
units2 += 1
if len(node1.children) == 1:
skips1 += 1
if len(node2.children) == 1:
skips2 += 1
elif node1depth < node2depth:
node1 = node1.getParent()
units1 += 1
if len(node1.children) == 1:
skips1 += 1
elif node1depth > node2depth:
node2 = node2.getParent()
units2 += 1
if len(node2.children) == 1:
skips2 += 1
# Both node1 and node2 both point to the YCA at this point.
# What is the depth of the YCA? Use this to normalize.
#youngestCommonAncestorDepth = node1.depth()
hops1 = units1 - skips1
hops2 = units2 - skips2
distance = hops1 + hops2
distance = max(0, distance-3)
# if hops1 == 1 and hops2 == 1:
# distance = 0.0
#distance /= float(self.etree.root.depth())
#distance /= youngestCommonAncestorDepth
#distance *= -1.0
return distance
def treeDistance2(self, etree, node1, node2):
units1 = 0
units2 = 0
distance = 0
pointer1 = node1
pointer2 = node2
while (node1 is not node2):
node1depth = node1.depth()
node2depth = node2.depth()
if node1depth == node2depth:
node1 = node1.getParent()
node2 = node2.getParent()
units1 += (node1.depth() - node1depth)
units2 += (node2.depth() - node2depth)
elif node1depth < node2depth:
node1 = node1.getParent()
units1 += (node1.depth() - node1depth)
elif node1depth > node2depth:
node2 = node2.getParent()
units2 += (node2.depth() - node2depth)
distance = float(max(units1, units2))
if distance == 1:
distance = 0
distance /= etree.root.depth()
distance *= -1.0
return distance
def isPunctuation(self, string):
"""
Return True if string is one of , . ! ? ' " ( ) : ; - @ etc.
"""
return self.punc.has_key(string)