forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRowEchelon.js
150 lines (135 loc) · 4.21 KB
/
RowEchelon.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/**
* Given a two dimensional matrix, find its row echelon form.
*
* For more info: https://en.wikipedia.org/wiki/Row_echelon_form
*
* @param {number[[]]} matrix - Two dimensional array of rational numbers.
* @returns {number[[]]} - Two dimensional array of rational numbers (row echelon form).
*
* @example
* const matrix = [
* [2,3,4,5,7],
* [9,8,4,0,9],
* [5,7,4,3,9],
* [3,4,0,2,1]
* ]
*
* const result = rowEchelon(matrix)
*
* // The function returns the corresponding row echelon form:
* // result:
* // [
* // [1, 1.5, 2, 2.5, 3.5],
* // [0, 1, 2.54545, 4.09091, 4.09091],
* // [0, 0, 1, 1.57692, 1.36539],
* // [0, 0, 0, 1, -0.25]
* // ]
*/
// Set a tolerance value for floating-point comparisons
const tolerance = 0.000001
// Check if all the rows have same length of elements
const isMatrixValid = (matrix) => {
let numRows = matrix.length
let numCols = matrix[0].length
for (let i = 0; i < numRows; i++) {
if (numCols !== matrix[i].length) {
return false
}
}
// Check for input other than a 2D matrix
if (
!Array.isArray(matrix) ||
matrix.length === 0 ||
!Array.isArray(matrix[0])
) {
return false
}
return true
}
const checkNonZero = (currentRow, currentCol, matrix) => {
let numRows = matrix.length
for (let i = currentRow; i < numRows; i++) {
// Checks if the current element is not very near to zero.
if (!isTolerant(0, matrix[i][currentCol], tolerance)) {
return true
}
}
return false
}
const swapRows = (currentRow, withRow, matrix) => {
let numCols = matrix[0].length
let tempValue = 0
for (let j = 0; j < numCols; j++) {
tempValue = matrix[currentRow][j]
matrix[currentRow][j] = matrix[withRow][j]
matrix[withRow][j] = tempValue
}
}
// Select a pivot element in the current column to facilitate row operations.
// Pivot element is the first non-zero element found from the current row
// down to the last row.
const selectPivot = (currentRow, currentCol, matrix) => {
let numRows = matrix.length
for (let i = currentRow; i < numRows; i++) {
if (matrix[i][currentCol] !== 0) {
swapRows(currentRow, i, matrix)
return
}
}
}
// Multiply each element of the given row with a factor.
const scalarMultiplication = (currentRow, factor, matrix) => {
let numCols = matrix[0].length
for (let j = 0; j < numCols; j++) {
matrix[currentRow][j] *= factor
}
}
// Subtract one row from another row
const subtractRow = (currentRow, fromRow, matrix) => {
let numCols = matrix[0].length
for (let j = 0; j < numCols; j++) {
matrix[fromRow][j] -= matrix[currentRow][j]
}
}
// Check if two numbers are equal within a given tolerance
const isTolerant = (a, b, tolerance) => {
const absoluteDifference = Math.abs(a - b)
return absoluteDifference <= tolerance
}
const rowEchelon = (matrix) => {
// Check if the input matrix is valid; if not, throw an error.
if (!isMatrixValid(matrix)) {
throw new Error('Input is not a valid 2D matrix.')
}
let numRows = matrix.length
let numCols = matrix[0].length
let result = matrix
// Iterate through the rows (i) and columns (j) of the matrix.
for (let i = 0, j = 0; i < numRows && j < numCols; ) {
// If the current column has all zero elements below the current row,
// move to the next column.
if (!checkNonZero(i, j, result)) {
j++
continue
}
// Select a pivot element and normalize the current row.
selectPivot(i, j, result)
let factor = 1 / result[i][j]
scalarMultiplication(i, factor, result)
// Make elements below the pivot element zero by performing
// row operations on subsequent rows.
for (let x = i + 1; x < numRows; x++) {
factor = result[x][j]
if (isTolerant(0, factor, tolerance)) {
continue
}
scalarMultiplication(i, factor, result)
subtractRow(i, x, result)
factor = 1 / factor
scalarMultiplication(i, factor, result)
}
i++
}
return result
}
export { rowEchelon }