forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKruskalMST.js
116 lines (105 loc) · 3.01 KB
/
KruskalMST.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class DisjointSetTreeNode {
// Disjoint Set Node to store the parent and rank
constructor(key) {
this.key = key
this.parent = this
this.rank = 0
}
}
class DisjointSetTree {
// Disjoint Set DataStructure
constructor() {
// map to from node name to the node object
this.map = {}
}
makeSet(x) {
// Function to create a new set with x as its member
this.map[x] = new DisjointSetTreeNode(x)
}
findSet(x) {
// Function to find the set x belongs to (with path-compression)
if (this.map[x] !== this.map[x].parent) {
this.map[x].parent = this.findSet(this.map[x].parent.key)
}
return this.map[x].parent
}
union(x, y) {
// Function to merge 2 disjoint sets
this.link(this.findSet(x), this.findSet(y))
}
link(x, y) {
// Helper function for union operation
if (x.rank > y.rank) {
y.parent = x
} else {
x.parent = y
if (x.rank === y.rank) {
y.rank += 1
}
}
}
}
class GraphWeightedUndirectedAdjacencyList {
// Weighted Undirected Graph class
constructor() {
this.connections = {}
this.nodes = 0
}
addNode(node) {
// Function to add a node to the graph (connection represented by set)
this.connections[node] = {}
this.nodes += 1
}
addEdge(node1, node2, weight) {
// Function to add an edge (adds the node too if they are not present in the graph)
if (!(node1 in this.connections)) {
this.addNode(node1)
}
if (!(node2 in this.connections)) {
this.addNode(node2)
}
this.connections[node1][node2] = weight
this.connections[node2][node1] = weight
}
KruskalMST() {
// Kruskal's Algorithm to generate a Minimum Spanning Tree (MST) of a graph
// Details: https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
// getting the edges in ascending order of weights
const edges = []
const seen = new Set()
for (const start of Object.keys(this.connections)) {
for (const end of Object.keys(this.connections[start])) {
if (!seen.has(`${start} ${end}`)) {
seen.add(`${end} ${start}`)
edges.push([start, end, this.connections[start][end]])
}
}
}
edges.sort((a, b) => a[2] - b[2])
// creating the disjoint set
const disjointSet = new DisjointSetTree()
Object.keys(this.connections).forEach((node) => disjointSet.makeSet(node))
// MST generation
const graph = new GraphWeightedUndirectedAdjacencyList()
let numEdges = 0
let index = 0
while (numEdges < this.nodes - 1) {
const [u, v, w] = edges[index]
index += 1
if (disjointSet.findSet(u) !== disjointSet.findSet(v)) {
numEdges += 1
graph.addEdge(u, v, w)
disjointSet.union(u, v)
}
}
return graph
}
}
export { GraphWeightedUndirectedAdjacencyList }
// const graph = new GraphWeightedUndirectedAdjacencyList()
// graph.addEdge(1, 2, 1)
// graph.addEdge(2, 3, 2)
// graph.addEdge(3, 4, 1)
// graph.addEdge(3, 5, 100) // Removed in MST
// graph.addEdge(4, 5, 5)
// graph.KruskalMST()