-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulated_data_script.R
52 lines (36 loc) · 1.26 KB
/
simulated_data_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
library(lme4)
library(ggplot2)
#create some levels
levs <- as.factor(c("A","B","C","D","E"))
#set the factor means
f_means <- c(5,2,16,12,6)
# set individual as a factor
ind <- as.factor(paste("i",1:9,sep=""))
#Set individual effects
i_eff <- seq(-4,4,length=9)
#now let's simulate a repeated measure for each individuals
idf <- data.frame(matrix(0,ncol=3,nrow=45))
colnames(idf) <- c("size","ind","levs")
counter <- 1
for(i in 1:length(levs)){
for(j in 1:length(ind)){
idf$size[counter] <- rnorm(1,f_means[i]+i_eff[j],.3)
idf$ind[counter] <- ind[j]
idf$levs[counter] <- levs[i]
counter <- counter + 1
}
}
idf$ind <- rep(ind,5)
idf$levs <- sort(rep(levs,9))
ggplot(idf,aes(x=levs,y=size,group=ind,colour=ind))+geom_point()+geom_path()
m3 <-lmer(size~levs - 1 +(1|ind), data=idf)
## Now let's randomize the individuals
idf_rand <- idf
for(i in 1:5){
idf_rand$ind[idf_rand$levs==levs[i]] <- sample(idf$ind[idf$levs==levs[i]],9,replace=F)
}
# here we can visualize the data and examine individual effects
ggplot(idf_rand,aes(x=levs,y=size,group=ind,colour=ind))+geom_point()+geom_path()
#Fit the model and then check the variance term
m4 <-lmer(size~levs - 1 +(1|ind), data=idf_rand)
qqnorm(m4, ~ranef(.))