-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathstemming.txt
63 lines (51 loc) · 1.46 KB
/
stemming.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
==============
Stemming Words
==============
>>> from nltk import stem
>>> stemmer = stem.PorterStemmer()
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookeri'
>>> stemmer = stem.LancasterStemmer()
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookery'
# essentially common suffix removal
>>> stemmer = stem.RegexpStemmer('ing')
>>> stemmer.stem('cooking')
'cook'
>>> stemmer.stem('cookery')
'cookery'
>>> stemmer.stem('ingleside')
'leside'
>>> stem.SnowballStemmer.languages
('danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish')
>>> spanish_stemmer = stem.SnowballStemmer('spanish')
>>> spanish_stemmer.stem('hola')
u'hol'
# SnowballStemmer('english') is an updated & improved Porter stemmer
==============================
Lemmatising Words with WordNet
==============================
>>> lemmatizer = stem.WordNetLemmatizer()
>>> lemmatizer.lemmatize('cooking')
'cooking'
>>> lemmatizer.lemmatize('cooking', pos='v')
'cook'
>>> lemmatizer.lemmatize('cookbooks')
'cookbook'
# lemmatizing preserves meaning and lemmas are real words, while stems may not be
>>> stemmer = stem.PorterStemmer()
>>> stemmer.stem('believes')
'believ'
>>> lemmatizer.lemmatize('believes')
'belief'
>>> stemmer.stem('buses')
'buse'
>>> lemmatizer.lemmatize('buses')
'bus'
>>> stemmer.stem('bus')
'bu'
# lossy compression, can be useful for fuzzy matching