This repository has been archived by the owner on Nov 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfasttextmf.py
210 lines (159 loc) · 5.85 KB
/
fasttextmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import re # library for regular expression operations
# import string # for string operations
# import time
import os
import fasttext
# import numpy as np
import pandas as pd
import spacy
import spacy.cli
from metaflow import FlowSpec, step
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
from text_preprocessing import (
# check_spelling,
expand_contraction,
normalize_unicode,
preprocess_text,
remove_number,
remove_punctuation,
remove_special_character,
remove_stopword,
to_lower,
)
import nltk
nltk.download("wordnet")
import logging
def clean_data(text_pro, load_spacy_model):
text_pro = re.sub("<[^>]*>", " ", text_pro)
emoticons = re.findall("(?::|;|=)(?:-)?(?:\)|\(|D|P)", text_pro)
doc = load_spacy_model(text_pro)
# text = " ".join([token.lemma_ for token in doc])
preprocess_functions = [
to_lower,
remove_special_character,
remove_number,
normalize_unicode,
remove_punctuation,
expand_contraction,
remove_stopword,
]
preprocessed_text = preprocess_text(text_pro, preprocess_functions)
# preprocessed_text = [porter.stem(word.strip()) for word in preprocessed_text.split() if (len(word)>1)]
if emoticons:
return preprocessed_text + " " + "".join(emoticons)
else:
return preprocessed_text
def add_label(df):
rows = []
for row in df.iterrows():
if row[1][1] == "negative":
text = "__label__NEGATIVE "
else:
text = "__label__POSITIVE "
row[1][0] = text + row[1][0]
rows.append(row[1][0])
df = pd.DataFrame({"text": rows})
return df
class HelloFlow(FlowSpec):
logging.basicConfig(format="%(levelname)s: %(message)s")
logger = logging.getLogger("mylogger")
logger.setLevel("WARNING")
@step
def start(self):
print("Metaflow is starting.")
self.next(self.load_data)
@step
def load_data(self):
self.df = pd.read_csv("data/fasttext/movie_data.csv")
print(self.df.shape)
print("INFO: data loaded")
self.next(self.clean_data)
@step
def clean_data(self):
spacy.cli.download("en_core_web_sm")
load_spacy_model = spacy.load("en_core_web_sm", disable=["parser", "ner"])
print(self.df.loc[0, 'review'])
# processing each review into a list of stemmed tokens
self.df["review_processed"] = self.df["review"].apply(
lambda x: clean_data(x, load_spacy_model)
)
self.df.to_csv("data/fasttext/clean_movie_data.csv", index=False)
print("INFO: data cleaned and saved")
self.next(self.transform_data)
@step
def transform_data(self):
# self.df = pd.read_csv("data/fasttext/clean_movie_data.csv")
print(self.df.shape)
X = self.df['review_processed']
y = self.df['sentiment']
# train/test split is 80/20, with the same number of positive
# and negative reviews in both subsets (stratified)
X_train, self.X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify = y)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=42, stratify = y_train)
X_train = pd.concat([X_train, y_train], axis=1).reset_index(drop=True)
X_val = pd.concat([X_val, y_val], axis=1).reset_index(drop=True)
self.X_test = pd.concat([self.X_test, y_test], axis=1).reset_index(drop=True)
print(X_train.shape)
print(X_val.shape)
print(self.X_test.shape)
df_train = X_train.copy()
df_val = X_val.copy()
df_test= self.X_test.copy()
self.df_train = add_label(df_train)
self.df_val = add_label(df_val)
self.df_test = add_label(df_test)
print("INFO: data transformed")
self.next(self.save_data)
@step
def save_data(self):
self.df_train.to_csv(
"data/fasttext/train.csv", header=None, index=False, columns=["text"]
)
self.df_val.to_csv(
"data/fasttext/val.csv", header=None, index=False, columns=["text"]
)
self.df_test.to_csv(
"data/fasttext/test.csv", header=None, index=False, columns=["text"]
)
print("INFO: data saved")
self.next(self.training_model)
@step
def training_model(self):
print("INFO: starting training...")
model = fasttext.train_supervised(
input="data/fasttext/train.csv",
autotuneValidationFile="data/fasttext/val.csv",
autotuneDuration=300 * 1,
)
model.save_model("models/fasttext_model.bin")
print(model.labels)
print("INFO: model trained and saved")
self.next(self.evaluate_model)
@step
def evaluate_model(self):
model = fasttext.load_model("models/fasttext_model.bin")
results = model.test("data/fasttext/test.csv")
print(results)
print(f"Test Samples: {results[0]} Precision : {results[1]*100:2.4f}")
self.X_test['prediction'] = 'negative'
for i in range(self.X_test.shape[0]):
value = (
'negative'
if model.predict(self.X_test.loc[i, "review_processed"])[0][0]
== "__label__NEGATIVE"
else 'positive'
)
self.X_test.loc[i, "prediction"] = value
print(self.X_test.loc[0,"prediction"])
print(self.X_test.loc[0,"sentiment"])
# provera accuracy
print(f'''Accuracy: {(self.X_test["prediction"] == self.X_test["sentiment"]).sum() / self.X_test.shape[0] * 100}''')
print("INFO: model evaluated")
self.next(self.end)
@step
def end(self):
print("Metaflow is all done.")
if __name__ == "__main__":
HelloFlow()