-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
66 lines (46 loc) · 1.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import tensorflow as tf
from conf import conf, outlier_exposure
from models import ood_accuracy
layers = tf.keras.layers
ReduceLROnPlateau = tf.python.keras.callbacks.ReduceLROnPlateau
EarlyStopping = tf.python.keras.callbacks.EarlyStopping
ds = conf.in_distribution_data.load()
ds_val = conf.val_ds
if conf.strategy == outlier_exposure:
ds_out = conf.out_of_distribution_data.load()
ds = tf.data.experimental.sample_from_datasets([ds, ds_out], [0.5, 0.5], seed=29)
model = conf.make_model()
hist = model.fit(ds, epochs=3, validation_data=ds_val)
def unfreeze_model(model, layer_name: str):
beyond_layer = False
# We unfreeze the top 20 layers while leaving BatchNorm layers frozen
for layer in model.layers:
if layer.name == layer_name:
beyond_layer = True
if not beyond_layer:
continue
if not isinstance(layer, layers.BatchNormalization):
layer.trainable = True
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
if conf.strategy == outlier_exposure:
metrics = ['accuracy', ood_accuracy]
else:
metrics = ['accuracy']
model.compile(
optimizer=optimizer, loss=conf.loss, metrics=metrics
)
unfreeze_model(model, layer_name='block2b_add')
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.6, min_delta=0.01,
patience=3, min_lr=1e-6, verbose=1)
early_stop = EarlyStopping(patience=5, restore_best_weights=True, verbose=1)
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=conf.checkpoint_filepath,
save_weights_only=True,
monitor='val_accuracy',
mode='max',
save_best_only=True)
hist = model.fit(ds, epochs=conf.EPOCHS, initial_epoch=3, validation_data=ds_val,
callbacks=[reduce_lr,
early_stop,
model_checkpoint_callback])
model.evaluate(ds, verbose=1)