-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto.py
145 lines (111 loc) · 4.39 KB
/
auto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import matplotlib.pyplot as plt
import buggesmatteland as bml
import math
import statistics as st
import xlsxwriter
import sys
# ---------- These are supposed to change ---------- #
dBs = [-10,0,10,20,30,40,50,60]
lengthPowers = [10,12,14,16,18,20]
ITERATIONS = 1000
# ---------- Constants ---------- #
A = 1.0
T = 10**(-6)
N = 513
n_0 = -256
f_0 = 10**5
omega_0 = 2*np.pi*f_0
theta = np.pi/8
FILENAME = "SimulationResults.xlsx"
# ---------- CRLB Helpers ---------- #
P = (N*(N-1)) / 2
Q = (N*(N-1)*(2*N-1)) / 6
# ---------- CRLB ---------- #
def iterate(SIGMA_SQUARED,fft_length):
# ---------- Signals ---------- #
# White complex Gaussian noise
wReal = np.random.normal(0, np.sqrt(SIGMA_SQUARED), size=N)
wImag = np.random.normal(0, np.sqrt(SIGMA_SQUARED), size=N)*1j
w = []
for i in range(N):
w.append(wReal[i] + wImag[i])
# Exponential signal
s = []
for n in range(N):
s.append(A*np.exp(np.complex(0,1)*((omega_0)*(n + n_0)*T + theta)))
# Total signal
x = []
for i in range(N):
x.append(s[i] + w[i])
# Fourier transform
FT_x = np.fft.fft(x,fft_length)
# Finding most dominant in total signal
f_2,i = bml.findDominantFrequency(np.absolute(FT_x),T,fft_length)
t = np.angle((np.exp(-(np.complex(0,1)*2*np.pi*f_2*n_0*T)))*FT_x[i])
return f_2,t
def main():
print("Simulating datasets with:")
print("SNRs: ",dBs)
print("FFTs with radix-2 powers:",lengthPowers)
print("Each with",ITERATIONS, "iterations. This might take some time ...")
print()
wb = xlsxwriter.Workbook(FILENAME)
ws = wb.add_worksheet()
# Colum names
ws.write(0, 0, "FFT Length")
ws.write(0, 1, "SNR [dB]")
ws.write(0, 2, "Mean estimated frequency [Hz]")
ws.write(0, 3, "Mean frequency error [Hz]")
ws.write(0, 4, "Frequency variance [Hz^2]")
ws.write(0, 5, "Frequency CRLB [Hz^2]")
ws.write(0, 6, "Mean estimated phase [rad]")
ws.write(0, 7, "Mean phase error [rad]")
ws.write(0, 8, "Phase variance [rad^2]")
ws.write(0, 9, "Phase CRLB [rad^2]")
lengthIterationIndex = 0
for p in lengthPowers:
fft_length = 2**p
dataIterationIndex = 0
ws.write(1 + lengthIterationIndex*len(dBs), 0, str(fft_length))
print("Computing FFTs of length", fft_length)
if p == 18:
print("Now also showing SNR progress:")
for SNR_db in dBs:
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 1, SNR_db)
SIGMA_SQUARED = bml.sigmaSquaredFromdB(SNR_db,A)
CRLB_OMEGA = (12*(SIGMA_SQUARED)) / ((A**2)*(T**2)*N*((N**2)-1))
CRLB_THETA = 12*(SIGMA_SQUARED)*((n_0**2)*N + 2*n_0*P + Q) / ((A**2)*(N**2)*((N**2)-1))
freqError=[]
freq = []
thetas = []
phaseError = []
for i in range(ITERATIONS):
f,t = iterate(SIGMA_SQUARED,fft_length)
errf = f_0 - f
freq.append(f)
freqError.append(errf)
errp = theta - t
thetas.append(t)
phaseError.append(errp)
freqmean = st.mean(freq)
freqErrMean=st.mean(freqError)
freqErrVar=st.variance(freqError, freqErrMean)
phaseMean = st.mean(thetas)
phaseErrMean = st.mean(phaseError)
phaseErrVar = st.variance(phaseError,phaseErrMean)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 2, freqmean)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 3, freqErrMean)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 4, freqErrVar)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 5, (CRLB_OMEGA/(4*np.pi**2)))
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 6, phaseMean)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 7, phaseErrMean)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 8, phaseErrVar)
ws.write(1 + dataIterationIndex +lengthIterationIndex*len(dBs), 9, CRLB_THETA)
dataIterationIndex += 1
if p > 16:
print("Done with SNR:",SNR_db, "dB")
lengthIterationIndex += 1
wb.close()
print("Added iterations data to",FILENAME)
main()