This repository has been archived by the owner on Jun 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
bingus.odin
164 lines (133 loc) · 5.49 KB
/
bingus.odin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
package main
import "core:fmt"
import "core:math"
import "core:math/linalg"
import rl "vendor:raylib"
main :: proc() {
rl.SetConfigFlags({.VSYNC_HINT, .WINDOW_RESIZABLE, .MSAA_4X_HINT})
rl.InitWindow(800, 600, "collision")
defer rl.CloseWindow()
rl.SetWindowSize(rl.GetScreenWidth(), rl.GetScreenHeight())
rl.DisableCursor()
look_angles: rl.Vector2 = 0
cam: rl.Camera3D = {
position = {5, 1, 5},
target = {0, 0, 3},
up = {0, 3, 0},
fovy = 90,
projection = .PERSPECTIVE,
}
vel: rl.Vector3
tris: [dynamic][3]rl.Vector3
append_quad :: proc(tris: ^[dynamic][3]rl.Vector3, a, b, c, d: rl.Vector3, offs: rl.Vector3 = {}) {
points := [][3]rl.Vector3{{b + offs, a + offs, c + offs}, {b + offs, c + offs, d + offs}}
append(tris, ..points)
}
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {0, -2, 0})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {0, -2, 10})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {10, 0, 10})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 10, 10}, {10, 10, 10}, {10, 0, 20})
append_quad(&tris, {0, 0, 0}, {10, 0, 0}, {0, 0, 10}, {10, 0, 10}, {10, 10, 30})
for !rl.WindowShouldClose() {
rl.BeginDrawing()
rl.ClearBackground({40, 30, 50, 255})
rl.BeginMode3D(cam)
dt := rl.GetFrameTime()
rot :=
linalg.quaternion_from_euler_angle_y_f32(look_angles.y) *
linalg.quaternion_from_euler_angle_x_f32(look_angles.x)
forward := linalg.quaternion128_mul_vector3(rot, linalg.Vector3f32{0, 0, 1})
right := linalg.quaternion128_mul_vector3(rot, linalg.Vector3f32{1, 0, 0})
look_angles.y -= rl.GetMouseDelta().x * 0.0015
look_angles.x += rl.GetMouseDelta().y * 0.0015
SPEED :: 20
RAD :: 1
if rl.IsKeyDown(.W) do vel += forward * dt * SPEED
if rl.IsKeyDown(.S) do vel -= forward * dt * SPEED
if rl.IsKeyDown(.D) do vel -= right * dt * SPEED
if rl.IsKeyDown(.A) do vel += right * dt * SPEED
if rl.IsKeyDown(.E) do vel.y += dt * SPEED
if rl.IsKeyDown(.Q) do vel.y -= dt * SPEED
// gravity
vel.y -= dt * 10 * (vel.y < 0.0 ? 2 : 1)
if rl.IsKeyPressed(.SPACE) do vel.y = 15
// damping
vel *= 1.0 / (1.0 + dt * 2)
// Collide
for t in tris {
closest := closest_point_on_triangle(cam.position, t[0], t[1], t[2])
diff := cam.position - closest
dist := linalg.length(diff)
normal := diff / dist
rl.DrawCubeV(closest, 0.05, dist > RAD ? rl.ORANGE : rl.WHITE)
if dist < RAD {
cam.position += normal * (RAD - dist)
// project velocity to the normal plane, if moving towards it
vel_normal_dot := linalg.dot(vel, normal)
if vel_normal_dot < 0 {
vel -= normal * vel_normal_dot
}
}
}
cam.position += vel * dt
cam.target = cam.position + forward
rl.DrawCubeV(cam.position + forward * 10, 0.25, rl.BLACK)
for t in tris {
rl.DrawTriangle3D(t[0], t[1], t[2], rl.GRAY)
rl.DrawLine3D(t[0], t[1], rl.LIGHTGRAY)
rl.DrawLine3D(t[0], t[2], rl.LIGHTGRAY)
rl.DrawLine3D(t[1], t[2], rl.LIGHTGRAY)
}
rl.DrawCube({0, 0, 0}, 0.1, 0.1, 0.1, rl.WHITE)
rl.DrawCube({1, 0, 0}, 1, 0.1, 0.1, rl.RED)
rl.DrawCube({0, 1, 0}, 0.1, 1, 0.1, rl.GREEN)
rl.DrawCube({0, 0, 1}, 0.1, 0.1, 1, rl.BLUE)
rl.EndMode3D()
rl.DrawFPS(4, 4)
rl.DrawText(fmt.ctprintf("pos: %v, vel: %v", cam.position, vel), 4, 30, 20, rl.WHITE)
rl.EndDrawing()
}
}
// Real Time collision detection 5.1.5
closest_point_on_triangle :: proc(p, a, b, c: rl.Vector3) -> rl.Vector3 {
// Check if P in vertex region outside A
ab := b - a
ac := c - a
ap := p - a
d1 := linalg.dot(ab, ap)
d2 := linalg.dot(ac, ap)
if d1 <= 0.0 && d2 <= 0.0 do return a // barycentric coordinates (1,0,0)
// Check if P in vertex region outside B
bp := p - b
d3 := linalg.dot(ab, bp)
d4 := linalg.dot(ac, bp)
if d3 >= 0.0 && d4 <= d3 do return b // barycentric coordinates (0,1,0)
// Check if P in edge region of AB, if so return projection of P onto AB
vc := d1 * d4 - d3 * d2
if vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0 {
v := d1 / (d1 - d3)
return a + v * ab // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
cp := p - c
d5 := linalg.dot(ab, cp)
d6 := linalg.dot(ac, cp)
if d6 >= 0.0 && d5 <= d6 do return c // barycentric coordinates (0,0,1)
// Check if P in edge region of AC, if so return projection of P onto AC
vb := d5 * d2 - d1 * d6
if vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0 {
w := d2 / (d2 - d6)
return a + w * ac // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
va := d3 * d6 - d5 * d4
if va <= 0.0 && (d4 - d3) >= 0.0 && (d5 - d6) >= 0.0 {
w := (d4 - d3) / ((d4 - d3) + (d5 - d6))
return b + w * (c - b) // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
denom := 1.0 / (va + vb + vc)
v := vb * denom
w := vc * denom
return a + ab * v + ac * w // = u*a + v*b + w*c, u = va * denom = 1.0-v-w
}