forked from facebookresearch/LayerSkip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
161 lines (136 loc) · 5.54 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import json
import random
from dataclasses import dataclass
from typing import Dict, List, Optional
from datasets import load_dataset
# for language modeling problems how long to use the prefix as
PREFIX_LENGTH: int = 100
@dataclass
class EvaluationExample:
input: str
output: str
class DatasetFormat:
CHAT_FORMAT: str = "chat_format"
CNN_DM_SUMMARIZATION: str = "cnn_dm_summarization"
CNN_DM_LM: str = "cnn_dm_lm"
XSUM_SUMMARIZATION: str = "xsum_summarization"
HUMAN_EVAL: str = "human_eval"
def LowercaseProcessingFunction(input: str) -> str:
return input.lower()
# TODO: fix or remove TOPv2 benchmarking
def prepare_evaluation_examples_chat_format(data_path: str) -> List[EvaluationExample]:
SINGLE_TURN_TEMPLATE: str = "\n[{role}]\n{message}\n[/{role}]"
evaluation_data_points = []
def stringify_conversation(conversation: List[Dict[str, str]]) -> str:
return "".join(
[
SINGLE_TURN_TEMPLATE.format(role=x["role"], message=x["message"])
for x in conversation
]
)
for line in open(data_path):
json_line = json.loads(line)
i: int = 0
while i < len(json_line["data"]):
if json_line["data"][i]["role"] == "PARSER":
evaluation_data_points.append(
EvaluationExample(
input=stringify_conversation(json_line["data"][1:i])
+ "\n[PARSER]\n",
output=stringify_conversation([json_line["data"][i]]),
)
)
i += 1
return evaluation_data_points
def prepare_cnn_dm_lm_format() -> List[EvaluationExample]:
evaluation_data_points = []
for data_point in load_dataset("cnn_dailymail", "3.0.0")["test"]:
words = data_point["article"].split()
evaluation_data_points.append(
EvaluationExample(
input=" ".join(words[:PREFIX_LENGTH]),
output=" ".join(words[PREFIX_LENGTH:]),
)
)
return evaluation_data_points
def prepare_cnn_dm_summarization_format(n_shot: int = 0, seed: int = 42) -> List[EvaluationExample]:
prompt_shots = ""
if n_shot > 0:
prompt_keys=["article", "highlights"]
shots = load_dataset("cnn_dailymail", name="3.0.0", split="train").shuffle(seed=seed).select(range(n_shot))
for i in range(n_shot):
prompt = "Article: " + shots[i][prompt_keys[0]] + "\nSummary: " + shots[i][prompt_keys[1]].replace("\n", "") + "\n"
prompt_shots += prompt
prompt_shots += "\n"
evaluation_data_points = []
for data_point in load_dataset("cnn_dailymail", name="3.0.0", split="test"):
article = data_point["article"]
highlights = data_point["highlights"]
evaluation_data_points.append(
EvaluationExample(
input=prompt_shots + f"Article: {article}\nSummary:",
output=f" {highlights}",
)
)
return evaluation_data_points
def prepare_xsum_summarization_format(n_shot: int = 0, seed: int = 42) -> List[EvaluationExample]:
prompt_shots = ""
if n_shot > 0:
prompt_keys=["document", "summary"]
shots = load_dataset("xsum", split="train").shuffle(seed=seed).select(range(n_shot))
for i in range(n_shot):
prompt = "Article: " + shots[i][prompt_keys[0]] + "\nSummary: " + shots[i][prompt_keys[1]].replace("\n", "") + "\n"
prompt_shots += prompt
prompt_shots += "\n"
evaluation_data_points = []
for data_point in load_dataset('xsum', split='test'):
article = data_point["document"]
highlights = data_point["summary"]
evaluation_data_points.append(
EvaluationExample(
input=prompt_shots + f"Article: {article}\nSummary:",
output=f" {highlights}",
)
)
return evaluation_data_points
def prepare_human_eval() -> List[EvaluationExample]:
evaluation_data_points = []
for data_point in load_dataset('openai_humaneval', split='test'):
evaluation_data_points.append(
EvaluationExample(
input=data_point["prompt"],
output=data_point["canonical_solution"],
)
)
return evaluation_data_points
def get_data(
random_shuffle: bool,
num_samples: int,
dataset: str,
data_path: Optional[str] = None,
n_shot: int = 0,
seed: int = 42,
) -> List[EvaluationExample]:
if dataset == DatasetFormat.CHAT_FORMAT:
evaluation_data_points = prepare_evaluation_examples_chat_format(data_path)
elif dataset == DatasetFormat.CNN_DM_SUMMARIZATION:
evaluation_data_points = prepare_cnn_dm_summarization_format(n_shot=n_shot, seed=seed)
elif dataset == DatasetFormat.XSUM_SUMMARIZATION:
evaluation_data_points = prepare_xsum_summarization_format(n_shot=n_shot, seed=seed)
elif dataset == DatasetFormat.CNN_DM_LM:
evaluation_data_points = prepare_cnn_dm_lm_format()
elif dataset == DatasetFormat.HUMAN_EVAL:
evaluation_data_points = prepare_human_eval()
else:
raise NotImplementedError(f"Unknown dataset format {dataset}")
if random_shuffle:
random.shuffle(evaluation_data_points)
if num_samples:
evaluation_data_points = evaluation_data_points[:num_samples]
return evaluation_data_points