
Università di Pisa, Master Degree in Computer Science
Course of ”Human Language Technologies” (HLT)

Named entity recognition for Clinical records
Report of the Final Project for the A.Y. 2022/2023

Andrea Iommi

January 16, 2023

Abstract

As final project for Human Language Technologies (HLT) I developed a project that extracts
knowledge from Italian medical records written by physicians and provides a simple web inter-
face to make prediction on sentences. I also compared the quality of the project’s result with the
result of MultiCoNER competition.

1 Introduction

Named entity recognition (NER) is a form of natural language processing (NLP), which is a sub-
field of artificial intelligence. NER is the task of detecting key information in texts, a specific entity
can be only a word or a group of words that refer to the same concept. This task can be adopted in
a plenty of fields (Human resources, Customer support, Content classification, Healthcare and so
forth). In the paper, I focused on the Healthcare field, in particular I had to deal with the clinical
records. Clinical records are very powerful tools from which useful information can be extracted,
for example, to categorize the sentences based on the entities detected. In addiction, several Data
mining techniques can be applied (e.g. Association Rule Mining [1]). Extracting relevant and
useful entities is important but, unfortunately, it is not straightforward because the same concept
in a text can be written in a different way among the physicians, such as abbreviations or syn-
onyms. Therefore, we need a sophisticated technique of language analysis in order to recognize
these expressions.

1

2 Related Work

In the early state of NLP several tasks like NER are solved by Symbolic Artificial Intelligence
(SAI). It uses human-readable symbols that represent real-world entities or concepts in order to
create "rules" for the manipulation of those symbols, leading to a rule-based system. As AI has
progressed, we have moved on techniques such as Conditional Random Fields (CRF) or Support
Vector Machines (SVM) models provided by Machine Learning field. It is worth noting that in
2015 [2] a task similar to ours has been solved with the CRF, which was, at that time, the state
of the art. In these last years, a new Machine Learning framework has earned the supremacy in
the NLP: it is called BERT (Bidirectional Encoder Representations from Transformers). BERT is a
model which is composed of several transformer layers with a Multi-Head attention module that
allows to understand better (respect to previous models) the context of the sentences. BERT is a
general pre-trained framework, so this allows us to use it as a baseline and to extend it in order to
solve a specific task like NER.

2.1 BERT model

The corpus used in this project is in italian, thus I had to choose a model that it was pre-trained
with an Italian dataset. The model chosen for this task was provided by Huggingface [5]. In
particular, I utilized dbmdz/bert-base-italian-xxl-cased, where the word cased means that there is a
distinction between the lower and the upper case. For the NER, I need a model that classify each
tokens individually into the sentence received as input, so I adopted BertForTokenClassification.
BertForTokenClassification is a model that implements the BERT and an additional linear layer at
the end used for the classification. Actually, a complex solutions such as MultiCoNER (which will
be introduced later) has adopted another point of view. It adopts a further CRF layer as sequence
tagging instead of single token classification, because usually a tag for one specific token is affected
by the previous tags. However in my project I adopted a simplistic solution and I will show that
the results are not so much different, even if the MultiCoNER provided better results in some
metrics (respect to our task).

3 Medical records corpus

3.1 CoNLL and IOB Format

The italian medical records I have used have been formatted by CoNLL [3], this means that we
have one token (we can consider a token as a single word) for each line. Additional informations
such as POS tag, labels or general annotations are separated by a single tab, instead different
sentences are separated by an empty line. In the project, I need a label for each token that identify if
the token is associated to a specific tag (Person, Location, Facilities, and so on). Sometimes one tag
could be associated to more than one single word, for example: "Mario Rossi is a policeman", "Mario
rossi" are two tokens but together the tag is "Person". To solve this, the annotations are coded by
IOB format[6] (Inside–outside–beginning tagging), where the I- prefix before a tag (e.g. "I-PER")
indicates that the tag is inside a group. An O tag indicates that a token belongs to no group. The
B- prefix before a tag indicates that the tag is the beginning of a group that immediately follows
another group without O tags between them. It is oblivious that in order to obtain a well-formatted
IOB, we have to follow a precisely order to assign the tag (first B then I).

2

Figure 1: Example of CoNLL format and IOB annotation

In figure 1, we can see that we have a token for each line, and further information (POS tag, Lem-
matized token and entity). For our purpose the POS tag and lemmatized token are not utilized.
The figure also shows how IOB annotation works.

3.2 Entities

The dataset I used was composed in two groups, each group shares the same sentences but it was
annotated by different tags. To identify entities of interest in text I used two classifiers: NER A, for
Disease or Syndrome, Drug, Active Ingredient and Sign or Symptom; NER B for Body Part and
Treatment; NER A and NER B are used on sets of disjoint categories, i.e., each mention belongs to
a single category.

Group A Group B

Disease or Syndrome Body part
Drug Treatment
Active Ingredient
Sign or Symptom

Table 1: Entities divided in groups

3.3 Sentences

In order to train the model, I have pre-processed the datasets. The original datasets were composed
for the group A: ananmnesi.a.iob and esami.a.iob; and for the group B: ananmensi.b.iob and esami.b.iob.
The first phase was unify all documents in only two datasets: dataset.a.conll and dataset.b.conll.
The second phase, instead, takes the dataset and it parses it into a set of sentences. Finally, both
datasets A and B reach 265790 sentences and, after the removal of duplicates, the the number was
reduced to 1079501. The third (and last) phase consists into splitting the entire datasets by holdout

1The huge number of duplicate is provided from the fact that inside the datasets there are several sentences, repeated
many times, that are composed by few words (e.g. 3 - 4 tokens) and in the most cases they are not so much informative.

3

Figure 2: Distribution of entities used

technique (80%TR - 10%VL - 10%TS), obtaining 86360 sentences for training, 10795 for validation
and 10795 for test.

4 Experiments

4.1 Hyperparameters

As preliminary phase, I selected the parameters which were to consider "static" (fixed as constant),
and parameters to try in different configurations. I chose the following parameters as static pa-
rameters: Optimizer, Momentum, Batch size, Weight decay, Max epochs, Early Stopping. Concerning
the batch size, it was done various attempts and the value assigned was very influenced by the
GPU memory and the computational power available. Regarding to Max epochs, also in this way
since the resource and time was limited, we chose to apply a barrier to a maximum number of
epochs per model. However we discovered that, even if the threshold was set with a low number,
the model reaches a very good performance after few steps. This is due to the fact that the model
is already trained, so a few iterations is enough to specialize in our task. Sometimes, I noticed
that the model diverge to overfitting, nevertheless given a Early Stopping mechanism I had the
opportunity to stop the train and avoid unnecessarily additional iterations. Talking about the free
parameters, there is the Learning Rate, they were tried exactly 7 distinct values. The table 2 shows
all configurations tried for each NER separately (14 in total).

4

Parameters Values
Learning rate 0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.010
Momentum 0.9

Weight decay 0.0002
Batch size 16

Max epochs 12
Early Stop.(Patience) 3

Optimizer Stochastic gradient descent
Nesterov mom. True

Table 2: Hyper-parameters

4.2 Grid search’s results

Position Learning rate Optimal Epoch Stopping Epoch Tr loss Vl loss Vl F1-score

1 0.004 8 12 0.0061 0.0164 0.9627
2 0.006 3 6 0.0095 0.0165 0.9595
3 0.002 5 8 0.0048 0.0173 0.9543
4 0.008 2 5 0.0141 0.0179 0.9550
5 0.010 2 5 0.0152 0.0191 0.9529
6 0.001 8 11 0.0035 0.0194 0.9600
7 0.0005 12 12 0.0149 0.0258 0.9486

Table 3: Grid search for NER A

Position Learning rate Optimal Epoch Stopping Epoch Tr loss Vl loss Vl F1-score

1 0.008 4 7 0.0037 0.0045 0.9870
2 0.004 9 12 0.0009 0.0047 0.9878
3 0.006 8 12 0.0014 0.0048 0.9877
4 0.002 9 12 0.0005 0.0055 0.9867
5 0.001 10 12 0.0006 0.0063 0.9833
6 0.010 3 6 0.0043 0.0070 0.9727
7 0.0005 12 12 0.0042 0.0085 0.9751

Table 4: Grid search for NER B

The table 3 and 4 are composed by different columns: the learning rate, the epoch where the
model achieves the best score (in terms of minimum validation loss) called "Optimal Epoch", the
epoch where the execution is terminated by Early stopping called "Stopping Epoch", training loss
"Tr loss", validation loss "Vl loss" and the "F1-score", which representing the mean of all F1-scores,
calculated one for each entity. The results of table 3 is associated to the NER with the group of

5

entities A, the table 4 to the group B. Analizing the results, I can point out basically two things:

• The F1-scores in table 4 are higher respect to the ones in table 3, and this phenomenon could
be explained by the fact that the group A contains more entities respect to the group B.
More precisely, the group A contains 4 labels, the group B only 2, thus the NER A has more
etiquettes to assign and hence the error rate is higher. Another explanation could derive
from the sentences built: in fact, inside the datasets, there are some phrases where it is clear
that a token is assigned to a certain label, conversely sometime it is ambiguous (if you do not
know the solution, of course);

• The configurations with high learning rate have the particularity to achieve the optimal
epoch with a very few steps, in addiction the execution ends after few iterations because
the model exhibits overfitting symptoms.

4.3 MultiCoNER and related problems

The Multilingual Complex Named Entity Recognition (MultiCoNER) [7] is a project developed by
Amazon that represents the state of the art for NER task. I adopted the MultiCoNER as reference
to check the quality of project (for simplicity I call HLTProject). In order to make possible this com-
parison I utilized the same BERT pretrained model (dbmdz/bert-base-italian-xxl-cased) and dataset.
There are multiple differences between this two project both in the framework exploited and in
model implementation. Regarding the framework the mainly difference is that the MultiCoNER
use Pytorch-Lightning for training and testing. Concerning the model implementation, as previ-
ously said, the MultiCoNER deploys a further CRF layer over the BERT. There are others small
differences regarding the implementation but they do not influence the final results and thus they
will not be mentioned. In order to run the MultiCoNER, I had to fix some errors inside the code,
and I also encountered several problems regarding the python environment, however creating an
ad hoc environment I were able to use the project. Table 5 shows the parameters for MultiCoNER
executions.

Parameters Values

Learning rate 0.0001
Dropout 0.1

Batch size 64
Max epochs 5
Optimizer Adam

Table 5: MultiCoNER hyperparameters

The MultiCoNER requires that the training, validation and test datasets are in separated files.
Since the CoNLL reader was already implemented, I just split manually the dataset.a.conll and
dataset.b.conll, that I already mentioned in order to obtain train.a.conll, train.b.conll, val.a.conll, val.b.conll,
test.a.conll and test.b.conll. It is fundamental to point out that, for example, the train.a.conll shares
exactly the same sentences that are utilized for training dataset of HLTProject, and this holds both
for validation and test. Also in this way I built two model MultiCoNER A and MultiCoNER B.

6

4.4 Results

Table 6 and figure 3 illustrate the results provided by MultiCoNER and HLTProject on test datasets.
From the results we can say that I have obtained very good results. Concerning the precision,
we obtain better results by HLTProject from all entities, conversely, regarding the Recall Metric,
MultiCoNER performs better. It is a different situation for F1 score where there are some entities
that are classified better by HLTProject and others with MultiCoNER.

ACTI DISO DRUG SIGN BODY TREA

HLTProject - Precision 0.9764 0.9530 0.9824 0.9552 0.9663 0.9767

MultiCoNER - Precision 0.9696 0.9471 0.9761 0.9493 0.9264 0.9452

HLTProject - Recall 0.9538 0.9504 0.9808 0.9373 0.9630 0.9799

MultiCoNER - Recall 0.9733 0.9593 0.9850 0.9597 0.9739 0.9864

HLTProject - F1 0.9650 0.9517 0.9816 0.9461 0.9646 0.9783

MultiCoNER - F1 0.9715 0.9532 0.9805 0.9545 0.9495 0.9654

Table 6: Result

(a) Precision (b) Recall

(c) F1 - score

Figure 3: Results compared

7

5 Web-interface and Execution

5.1 Web-interface

Figure 4 reveals a naive web interface where an user can interact with the project. On the left there
is a list of all entities that the project handles, and we can notice that there are not distinctions be-
tween group A and group B, in fact it uses both. As soon as the user inserts the sentence, the latter
is submitted at the same time to model_A and model_B (the best model for each group), then the
program unifies the response in a unique result, which involves, potentially, all entities together.
On the right, under the input form, there is a history of sentences processed. For example, in the
first sentence there is the word chemioterapia that is labeled simultaneously as Disease or Syndrome
and Treatment, which are entities that belongs to different groups. Of course both models are not
perfect, and sometimes can occur some erroneous values, that I will discuss in the conclusion
paragraph.

Figure 4: Example of web interface with some example of use

5.2 How to run

To develop this project from scratch they were adopted different frameworks, basically: PyTorch,
Pandas, NumPy and Flask. Flask was used to create a very straightforward web-interface that inter-
act with the trained model. The code of this project is entirely available on Github [8].

8

train_model.py

train_model.py handles the training phase. The mandatory parameters are: the source of dataset
and the name of model; all the rest is optional (I suggest to read the documentation on github).
I supply to the project as example dataset.a.conll, so the script trains the model with the group A
of entity. Inside the implementation the dataset will be split into training, validation and test, but
only the training and validation will be used. A static seed (for the random splitting) was designed
to obtain the determinism in multiple executions.

#!/bin/bash
python train_model.py --datasets dataset.a.conll --model_name modelA

evals_models.py

evals_model.py manages the evaluation phase. Contrary to train_model.py, this time only the
test dataset is used (thanks to determinism we are sure that we are using always the same test
dataset even with multiple executions). The mandatory parameters are: the source of datasets
and the name of models. In this case it requires to load both datasets and models trained. We
can perform two kinds of evaluation: the evaluation provided by Conlleval [4] or the hand-made
implementation.

#!/bin/bash
python eval_models.py --models modelA.pt modelB.pt

--datasets dataset.a.conll dataset.b.conll --type_eval conlleval

6 Limitations and Conclusion

I would like to conclude this report with some considerations. First of all, the comparison with
MultiCoNER gives us insight that CRF (used for sequence tagging) is very advantageous as an
additional layer over the BERT. In fact, with only 5 epochs the MultiCoNER gave extraordinarily
good results and sometimes even better results then HLTProject. However, the aim of this project
was not to go into details concerning the MultiCoNER and for this reason I did not explore more
suitable parameters. This means that the results displayed could be worst respect the potential of
code. Secondly, even if HLTProject achieves good results, as we can see in figure 4, it is not perfect
and sometimes trivial errors occur (e.g. the comma labeled as DISO). However, since the time
spent for this project was limited, some advanced solutions have not been adopted. It is worth
saying that extending the HLTProject with a sequence tagger such as CRF gives it the opportunity
to perform better.

At the end of this project, I have learned how to deal with BERT framework or, more in general,
with NLP. I also improved my personal skills with Python languages and frameworks like pytorch,
pandas and flask. I would like to thank Daniele Sartiano for helping me with MultiCoNER project.

9

References
[1] Association Rule Mining. URL: https://en.wikipedia.org/wiki/Association_

rule_learning.

[2] Giuseppe Attardi, Vittoria Cozza, and Daniele Sartiano. “Annotation and Extraction of Rela-
tions from Italian Medical Records.” In: IIR. 2015.

[3] CoNLL. URL: https://universaldependencies.org/format.html.

[4] CoNLL script evaluation. URL: https://github.com/sighsmile/conlleval.

[5] Huggingface. URL: https://huggingface.co/.

[6] Inside–outside–beginning (tagging). URL: https://en.wikipedia.org/wiki/Inside%
E2%80%93outside%E2%80%93beginning_(tagging).

[7] Multiconer. URL: https://github.com/amzn/multiconer-baseline.

[8] NER for Medical Records. URL: https://github.com/jacons/NERMedicalRecords.

10

https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Association_rule_learning
https://universaldependencies.org/format.html
https://github.com/sighsmile/conlleval
https://huggingface.co/
https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)
https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)
https://github.com/amzn/multiconer-baseline
https://github.com/jacons/NERMedicalRecords

	Introduction
	Related Work
	BERT model

	Medical records corpus
	CoNLL and IOB Format
	Entities
	Sentences

	Experiments
	Hyperparameters
	Grid search's results
	MultiCoNER and related problems
	Results

	Web-interface and Execution
	Web-interface
	How to run

	Limitations and Conclusion

