-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretraining.py
772 lines (678 loc) · 28.8 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import datetime
import yaml
import socket
import argparse
import json
import math
import os
import sys
import time
import datetime
import warnings
from functools import partial
from pathlib import Path
from typing import Dict, Iterable, List
import copy
import torch
from torch.amp.autocast_mode import autocast
from torch.nn import functional as F
from einops import rearrange
from torchvision import utils as vutils
from mirage.model import model_factory
from mirage.criterion import MaskedCrossEntropyLoss, MaskedMSELoss
from mirage.input_adapters import PatchedInputAdapter, SemSegInputAdapter
from mirage.output_adapters import SpatialOutputAdapter
from mutils import misc
from mutils import logger
from mutils.native_scaler import NativeScalerWithGradNormCount as NativeScaler
from mutils import native_scaler
from mutils.datasets_pretrain import build_mirage_pretraining_dataset
from mutils.optim_factory import create_optimizer
from mutils.factory import get_factory_adder
from mutils import checkpoint
DEFAULT_CONF = {
'channels': 1,
'stride_level': 1,
'input_adapter': partial(PatchedInputAdapter, num_channels=1),
'output_adapter': partial(SpatialOutputAdapter, num_channels=1),
'loss': MaskedMSELoss,
}
DOMAIN_CONF = {
'bscan': copy.deepcopy(DEFAULT_CONF),
'slo': copy.deepcopy(DEFAULT_CONF),
'bscanlayermap': {
'num_classes': 13,
'stride_level': 1,
'input_adapter': partial(SemSegInputAdapter, num_classes=13,
dim_class_emb=64, interpolate_class_emb=False),
'output_adapter': partial(SpatialOutputAdapter, num_channels=13),
'loss': partial(MaskedCrossEntropyLoss, label_smoothing=0.0),
},
}
def get_args():
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument(
'-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments. (default: %(default)s)'
)
parser = argparse.ArgumentParser('MIRAGE pre-training script', add_help=True)
parser.add_argument(
'--batch_size', default=256, type=int,
help='Batch size per GPU. (default: %(default)s)'
)
parser.add_argument(
'--epochs', default=1600, type=int,
help='Number of epochs. (default: %(default)s)'
)
parser.add_argument(
'--save_ckpt_freq', default=20, type=int,
help='Checkpoint saving frequency in epochs. (default: %(default)s)'
)
# Task parameters
parser.add_argument(
'--in_domains', default='bscan-slo-bscanlayermap', type=str,
help='Input domain names, separated by hyphen. (default: %(default)s)'
)
parser.add_argument(
'--out_domains', default='rgb-depth-semseg', type=str,
help='Output domain names, separated by hyphen. (default: %(default)s)'
)
# Model parameters
parser.add_argument(
'--model', default='miragepre_base', type=str, metavar='MODEL',
help='Name of model to train. (default: %(default)s)'
)
parser.add_argument(
'--num_encoded_tokens', default=98, type=int,
help='Number of tokens to randomly choose for encoder. (default: %(default)s)'
)
parser.add_argument(
'--perc_encoded_tokens', default=None, type=float,
help='Percentage of tokens to randomly choose for encoder. (default: %(default)s)'
)
parser.add_argument(
'--num_global_tokens', default=1, type=int,
help='Number of global tokens to add to encoder. (default: %(default)s)'
)
parser.add_argument(
'--patch_size', default=32, type=int,
help='Base patch size for image-like modalities. (default: %(default)s)'
)
parser.add_argument(
'--input_size', default=512, type=int,
help='Images input size for backbone. (default: %(default)s)'
)
parser.add_argument(
'--alphas', type=float, default=1.0,
help='Dirichlet alphas concentration parameter. (default: %(default)s)'
)
parser.add_argument(
'--sample_tasks_uniformly', default=False, action='store_true',
help='Set to True/False to enable/disable uniform sampling over tasks'
' to sample masks for. (default: %(default)s)'
)
parser.add_argument(
'--decoder_use_task_queries', default=True, action='store_true',
help='Set to True/False to enable/disable adding of task-specific'
' tokens to decoder query tokens. (default: %(default)s)'
)
parser.add_argument(
'--decoder_use_xattn', default=True, action='store_true',
help='Set to True/False to enable/disable decoder cross attention.'
' (default: %(default)s)'
)
parser.add_argument(
'--decoder_dim', default=256, type=int,
help='Token dimension inside the decoder layers. (default: %(default)s)'
)
parser.add_argument(
'--decoder_depth', default=2, type=int,
help='Number of self-attention layers after the initial cross attention.'
' (default: %(default)s)'
)
parser.add_argument(
'--decoder_num_heads', default=8, type=int,
help='Number of attention heads in decoder. (default: %(default)s)'
)
parser.add_argument(
'--drop_path', type=float, default=0.0, metavar='PCT',
help='Drop path rate. (default: %(default)s)'
)
parser.add_argument(
'--loss_on_unmasked', default=False, action='store_true',
help='Set to True/False to enable/disable computing the loss on'
' non-masked tokens. (default: %(default)s)'
)
parser.add_argument('--no_loss_on_unmasked', action='store_false', dest='loss_on_unmasked')
parser.set_defaults(loss_on_unmasked=False)
# Optimizer parameters
parser.add_argument(
'--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer. (default: %(default)s)'
)
parser.add_argument(
'--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer epsilon. (default: %(default)s)'
)
parser.add_argument(
'--opt_betas', default=[0.9, 0.95], type=float, nargs='+', metavar='BETA',
help='Optimizer betas. (default: %(default)s)'
)
parser.add_argument(
'--clip_grad', type=float, default=None, metavar='CLIPNORM',
help='Clip gradient norm. (default: %(default)s)'
)
parser.add_argument(
'--skip_grad', type=float, default=None, metavar='SKIPNORM',
help='Skip update if gradient norm larger than threshold.'
' (default: %(default)s)'
)
parser.add_argument(
'--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum. (default: %(default)s)'
)
parser.add_argument(
'--weight_decay', type=float, default=0.05,
help='Weight decay. (default: %(default)s)'
)
parser.add_argument(
'--weight_decay_end', type=float, default=None,
help='Final value of the weight decay. We use a cosine schedule for WD'
' (Set the same value as args.weight_decay to keep weight decay unchanged).'
' (default: %(default)s)'
)
parser.add_argument('--decoder_decay', type=float, default=None, help='decoder weight decay')
parser.add_argument(
'--blr', type=float, default=1e-4, metavar='LR',
help='Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'
' (default: %(default)s)'
)
parser.add_argument(
'--warmup_lr', type=float, default=1e-6, metavar='LR',
help='Warmup learning rate. (default: %(default)s)'
)
parser.add_argument(
'--min_lr', type=float, default=0., metavar='LR',
help='Lower lr bound for cyclic schedulers that hit 0. (default: %(default)s)'
)
parser.add_argument(
'--warmup_epochs', type=int, default=40, metavar='N',
help='Epochs to warmup LR, if scheduler supports. (default: %(default)s)'
)
parser.add_argument(
'--warmup_steps', type=int, default=-1, metavar='N',
help='Epochs to warmup LR, if scheduler supports. (default: %(default)s)'
)
# Augmentation parameters
parser.add_argument(
'--hflip', type=float, default=0.5,
help='Probability of horizontal flip. (default: %(default)s)'
)
parser.add_argument(
'--intensity_shift', type=float, default=0.1,
help='Intensity shift. (default: %(default)s)'
)
parser.add_argument(
'--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic). (default: %(default)s)'
)
parser.add_argument(
'--random-crop', type=float, default=1.0,
help='Random crop. (default: %(default)s)'
)
parser.add_argument(
'--affine', action='store_true',
help='Apply random affine transformations. (default: %(default)s)',
)
parser.add_argument('--no_affine', action='store_false', dest='affine')
parser.set_defaults(affine=True)
# Misc.
parser.add_argument(
'--base_output_dir', default='./__output/pre', type=str,
help='Path to save logs and checkpoints. (default: %(default)s)'
)
parser.add_argument(
'--device', default='cuda',
help='Device to use for training / testing. (default: %(default)s)'
)
parser.add_argument(
'--seed', default=0, type=int,
help='Random seed. (default: %(default)s)'
)
parser.add_argument(
'--resume', default='',
help='Resume from checkpoint. (default: %(default)s)'
)
parser.add_argument(
'--auto_resume', action='store_true',
help='Resume from the latest checkpoint, if any. (default: %(default)s)'
)
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument(
'--start_epoch', default=0, type=int, metavar='N',
help='Start epoch. (default: %(default)s)'
)
parser.add_argument(
'--num_workers', default=10, type=int,
help='Number of workers for data loader. (default: %(default)s)'
)
parser.add_argument(
'--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes)'
' transfer to GPU. (default: %(default)s)'
)
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument(
'--show_user_warnings', default=False, action='store_true',
help='Show user warnings. (default: %(default)s)'
)
parser.add_argument(
'--print-model', action='store_true',
help='Print model architecture. (default: %(default)s)'
)
required_parser = parser.add_argument_group('required arguments')
required_parser.add_argument(
'--weights', required=True, type=str,
help='Pretrain from checkpoint (model weights). (required)'
)
required_parser.add_argument(
'--data_path', required=True, type=str,
help='Dataset path. (required)'
)
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
if args.perc_encoded_tokens is not None:
total_tokens = 0
for domain, size in args.input_size.items():
current_tokens = 1
for i, s in enumerate(size):
current_tokens *= s // args.patch_size[domain][i]
total_tokens += current_tokens
print('Computing number of encoded tokens based on percentage:', args.perc_encoded_tokens)
args.num_encoded_tokens = int(total_tokens * args.perc_encoded_tokens)
print(f'> Number of encoded tokens: {args.num_encoded_tokens} (out of {total_tokens})')
domains = args.in_domains.split('-')
if isinstance(args.patch_size, int):
args.patch_size = {d: (args.patch_size, args.patch_size) for d in domains}
if isinstance(args.input_size, int):
args.input_size = {d: (args.input_size, args.input_size) for d in domains}
args.grid_sizes = {}
for domain, size in args.input_size.items():
args.grid_sizes[domain] = []
for i, s in enumerate(size):
args.grid_sizes[domain].append(s // args.patch_size[domain][i])
if socket.gethostname() == 'hemingway':
args.batch_size = 2
# Print configuration
args_dict = vars(args)
# Order alphabetically
args_dict = dict(sorted(args_dict.items()))
print(json.dumps(args_dict, indent=2))
return args
add_fm_config, fm_config_factory = get_factory_adder()
class FoundModel:
def __init__(self):
self.model: str
@add_fm_config('multimae-b')
class MIRAGEBaseFM(FoundModel):
def __init__(self):
self.model = 'miragepre_base'
@add_fm_config('mae_pretrain')
class MIRAGELargeFM(FoundModel):
def __init__(self):
self.model = 'miragepre_large'
def get_model(args):
'''Creates and returns model from arguments
'''
print(f'Creating model: {args.model} for inputs {args.in_domains} and outputs {args.out_domains}')
if isinstance(args.patch_size, int):
args.patch_size = {domain: (args.patch_size, args.patch_size) for domain in args.all_domains}
input_adapters = {
domain: DOMAIN_CONF[domain]['input_adapter'](
stride_level=DOMAIN_CONF[domain]['stride_level'],
patch_size_full=tuple(args.patch_size[domain]),
image_size=args.input_size[domain],
)
for domain in args.in_domains
}
output_adapters = {
domain: DOMAIN_CONF[domain]['output_adapter'](
stride_level=DOMAIN_CONF[domain]['stride_level'],
patch_size_full=tuple(args.patch_size[domain]),
dim_tokens=args.decoder_dim,
depth=args.decoder_depth,
num_heads=args.decoder_num_heads,
use_task_queries=args.decoder_use_task_queries,
task=domain,
context_tasks=list(args.in_domains),
use_xattn=args.decoder_use_xattn,
image_size=args.input_size[domain],
)
for domain in args.out_domains
}
fm_config = None
for kw in fm_config_factory.keys():
if kw in args.weights.lower():
fm_config = fm_config_factory[kw]()
break
if fm_config is None:
raise ValueError(f"Unknown model: {args.weights}")
model = model_factory[fm_config.model](
input_adapters=input_adapters,
output_adapters=output_adapters,
num_global_tokens=args.num_global_tokens,
drop_path_rate=args.drop_path,
args=args,
)
args.output_dir = os.path.join(args.base_output_dir, fm_config.__class__.__name__)
# Create output directory
(Path(args.output_dir) / 'debug').mkdir(exist_ok=True, parents=True)
# Save configuration
with open(Path(args.output_dir, 'config.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
if args.weights:
print(f'>> Loading weights from {args.weights}')
weights = torch.load(args.weights, map_location=args.device, weights_only=False)['model']
if '_vit_large' in args.weights:
def do_replacements(key):
return key.replace('blocks.', 'encoder.')
weights = { do_replacements(k): v for k, v in weights.items() }
model.load_state_dict(weights, strict=False)
else:
# Remove input and output adapters from the weights
new_weights = {}
for k, v in weights.items():
if 'input_adapter' in k or 'output_adapter' in k:
continue
new_weights[k] = v
weights = new_weights
msg = model.load_state_dict(weights, strict=False)
print(msg)
return model
def main(args):
device = torch.device(args.device)
misc.fix_seeds(args.seed)
if not args.show_user_warnings:
warnings.filterwarnings('ignore', category=UserWarning)
args.in_domains = args.in_domains.split('-')
args.out_domains = args.out_domains.split('-')
args.all_domains = list(set(args.in_domains) | set(args.out_domains))
model = get_model(args)
tasks_loss_fn = {
domain: DOMAIN_CONF[domain]['loss'](
patch_size=tuple(args.patch_size[domain]),
stride=DOMAIN_CONF[domain]['stride_level']
)
for domain in args.out_domains
}
# Get dataset
dataset_train = build_mirage_pretraining_dataset(args)
num_training_steps_per_epoch = len(dataset_train) // args.batch_size
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
prefetch_factor=2,
persistent_workers=True,
)
model.to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
if args.print_model:
print(f'Model = %s' % str(model))
print(f'Number of params: {n_parameters / 1e6} M')
total_batch_size = args.batch_size
args.lr = args.blr * total_batch_size / 256
print('LR = %.8f' % args.lr)
print('Batch size = %d' % total_batch_size)
print('Number of training steps = %d' % num_training_steps_per_epoch)
print('Number of training examples per epoch = %d' % (total_batch_size * num_training_steps_per_epoch))
optimizer = create_optimizer(args, model)
loss_scaler = NativeScaler()
print('Use step level LR & WD scheduler!')
lr_schedule_values = native_scaler.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = native_scaler.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print('Max WD = %.7f, Min WD = %.7f' % (max(wd_schedule_values), min(wd_schedule_values)))
checkpoint.auto_load_model(
args=args,
model=model,
optimizer=optimizer,
loss_scaler=loss_scaler,
)
print(f'Start training for {args.epochs} epochs')
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_one_epoch(
model=model,
data_loader=data_loader_train,
tasks_loss_fn=tasks_loss_fn,
optimizer=optimizer,
device=device,
epoch=epoch,
loss_scaler=loss_scaler,
max_norm=args.clip_grad,
max_skip_norm=args.skip_grad,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
num_encoded_tokens=args.num_encoded_tokens,
in_domains=args.in_domains,
loss_on_unmasked=args.loss_on_unmasked,
alphas=args.alphas,
sample_tasks_uniformly=args.sample_tasks_uniformly,
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
checkpoint.save_model(
args=args, model=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch
)
log_stats = {**{k: v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_parameters}
if args.output_dir:
with open(os.path.join(args.output_dir, 'log.txt'), mode='a', encoding='utf-8') as f:
f.write(json.dumps(log_stats) + '\n')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
with open(Path(args.output_dir) / 'training_time.txt', 'w') as f:
f.write(total_time_str)
def save_debug_images(preds, masks, input_dict, epoch, tasks_dict):
to_save = None
tasks_str = ''
predsc = {}
masksc = {}
input_dictc = {}
for task in preds:
if task in tasks_dict:
if tasks_str == '':
tasks_str = task
else:
tasks_str += f'-{task}'
# Create a copy of the prediction and mask
predsc[task] = preds[task].clone().detach()
masksc[task] = masks[task].clone().detach()
input_dictc[task] = input_dict[task].clone().detach()
# print(preds[task].shape, input_dict[task].shape)
# torch.Size([8, 1, 768, 768]) torch.Size([8, 1, 768, 768])
print(task, 'mask', masksc[task].dtype, masksc[task].shape,
masksc[task].sum().item(), masksc[task].numel())
print(task, 'preds', predsc[task].dtype, predsc[task].shape,
predsc[task].min().item(), predsc[task].max().item())
print(task, 'input', input_dictc[task].dtype, input_dictc[task].shape,
input_dictc[task].min().item(), input_dictc[task].max().item())
## Replace unmasked patches in the prediction by the input
# Reshape mask to image. Original shape is (B, L),
# where L is the number of tokens.
# We need to reshape it to (B, C, [D,] H, W)
if task in ['layermaps', 'bscanlayermap']:
# Apply softmax and undo one-hot encoding
predsc[task] = F.softmax(predsc[task], dim=1)
predsc[task] = predsc[task].argmax(dim=1, keepdim=True).float()
# Add channel dimension to input
input_dictc[task] = input_dictc[task].unsqueeze(1)
# to 0-1 (for visualization)
predsc[task] = predsc[task] / predsc[task].max()
input_dictc[task] = input_dictc[task] / input_dictc[task].max()
c = 1
if isinstance(args.patch_size, int):
c = input_dictc[task].shape[1]
h = input_dictc[task].shape[2] // args.patch_size
w = input_dictc[task].shape[3] // args.patch_size
else:
c = input_dictc[task].shape[1]
h = input_dictc[task].shape[2] // args.patch_size[task][0]
w = input_dictc[task].shape[3] // args.patch_size[task][1]
mask = rearrange(masksc[task], 'b (c h w) -> b c h w', c=c, h=h, w=w).float()
# print(task, 'new_mask', mask.shape, mask.sum().item(), mask.numel())
fh, fw = input_dictc[task].shape[2:]
mask = F.interpolate(mask, size=(fh, fw), mode='nearest')
# 1 means masked (predicted), 0 means input
predsc[task] = predsc[task] * mask + input_dictc[task] * (1 - mask)
print(task, 'new_mask', mask.dtype, mask.shape, mask.sum().item(), mask.numel())
input_to_save = input_dictc[task]
pred_to_save = predsc[task]
# Fixed size for saving
input_to_save = F.interpolate(input_to_save, (128, 128), mode='nearest')
pred_to_save = F.interpolate(pred_to_save, (128, 128), mode='nearest')
if to_save is None:
to_save = torch.cat([input_to_save, pred_to_save], dim=2)
else:
# Add a white line between images
white_line = torch.ones(
(input_to_save.shape[0], input_to_save.shape[1], 8, input_to_save.shape[3]),
device=to_save.device
)
to_save = torch.cat([to_save, white_line, input_to_save, pred_to_save], dim=2)
if to_save is not None:
# Maximum supported image dimension is 65500 pixels
# if to_save.shape[2] * to_save.shape[3] > 65500:
to_save = F.interpolate(to_save, size=(to_save.shape[2], to_save.shape[3]), mode='bilinear')
current_save_path = Path(args.output_dir) / 'debug' / f'{epoch}_{tasks_str}.jpg'
print(current_save_path)
vutils.save_image(to_save, current_save_path)
def train_one_epoch(
model: torch.nn.Module,
data_loader: Iterable,
tasks_loss_fn: Dict[str, torch.nn.Module],
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
max_norm: float = None, # type: ignore
max_skip_norm: float = None, # type: ignore
lr_scheduler=None,
start_steps=None,
lr_schedule_values=None,
wd_schedule_values=None,
num_encoded_tokens: int = 196,
in_domains: List[str] = [],
loss_on_unmasked: bool = True,
alphas: float = 1.0,
sample_tasks_uniformly: bool = False,
):
model.train()
metric_logger = logger.MetricLogger(delimiter=' ')
metric_logger.add_meter('lr', logger.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', logger.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for task in tasks_loss_fn:
tasks_loss_fn[task].epoch = epoch # type: ignore
for step, (x, _, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if step % print_freq == 0:
print(f'> EPOCH {epoch}, STEP {step}', flush=True)
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration # type: ignore
if lr_schedule_values is not None or wd_schedule_values is not None:
for _, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group['lr'] = lr_schedule_values[it] * param_group['lr_scale']
if wd_schedule_values is not None and param_group['weight_decay'] > 0:
param_group['weight_decay'] = wd_schedule_values[it]
tasks_dict = {
task: tensor.to(device, non_blocking=True)
for task, tensor in x.items()
}
input_dict = {
task: tensor
for task, tensor in tasks_dict.items()
if task in in_domains
}
with autocast('cuda'):
preds, masks = model(
input_dict,
num_encoded_tokens=num_encoded_tokens,
alphas=alphas,
sample_tasks_uniformly=sample_tasks_uniformly,
)
if args.output_dir and step == 0:
# Save images for debugging on first step
print('Saving debug images')
save_debug_images(preds, masks, tasks_dict, epoch, tasks_dict)
task_losses = {}
for task in preds:
target = tasks_dict[task]
if loss_on_unmasked:
task_losses[task] = tasks_loss_fn[task](preds[task].float(), target)
else:
task_losses[task] = tasks_loss_fn[task](preds[task].float(), target, mask=masks.get(task, None))
loss = sum(task_losses.values())
loss_value = sum(task_losses.values()).item() # type: ignore
task_loss_values = {f'{task}_loss': l.item() for task, l in task_losses.items()}
if not math.isfinite(loss_value):
print('Loss is {}, stopping training'.format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order # type: ignore
grad_norm = loss_scaler(
loss,
optimizer,
clip_grad=max_norm,
skip_grad=max_skip_norm,
parameters=model.parameters(),
create_graph=is_second_order
)
loss_scale_value = loss_scaler.state_dict()['scale']
metric_logger.update(loss=loss_value)
metric_logger.update(**task_loss_values)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group['lr'])
max_lr = max(max_lr, group['lr'])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group['weight_decay'] > 0:
weight_decay_value = group['weight_decay']
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step) # type: ignore
# gather the stats from all processes
print('Averaged stats:', metric_logger)
return {'[Epoch] ' + k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == '__main__':
args = get_args()
main(args)