-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathdemo.py
85 lines (66 loc) · 2.96 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
import tensorflow_hub as tfhub
def main():
model = tfhub.load('https://bit.ly/metrabs_l')
image = tf.image.decode_jpeg(tf.io.read_file('../test_image_3dpw.jpg'))
skeleton = 'smpl_24'
# Predict
pred = model.detect_poses(image, default_fov_degrees=55, skeleton=skeleton)
# Convert result to numpy arrays
pred = tf.nest.map_structure(lambda x: x.numpy(), pred)
# Visualize
joint_names = model.per_skeleton_joint_names[skeleton].numpy().astype(str)
joint_edges = model.per_skeleton_joint_edges[skeleton].numpy()
visualize(image.numpy(), pred, joint_names, joint_edges)
# Read the docs to learn how to
# - supply your own bounding boxes
# - perform multi-image (batched) prediction
# - supply the intrinsic matrix
# - select the skeleton convention (COCO, H36M, SMPL...)
# etc.
def visualize(image, pred, joint_names, joint_edges):
try:
visualize_poseviz(image, pred, joint_names, joint_edges)
except ImportError:
print(
'Install PoseViz from https://github.com/isarandi/poseviz to get a nicer 3D'
'visualization.')
visualize_matplotlib(image, pred, joint_names, joint_edges)
def visualize_poseviz(image, pred, joint_names, joint_edges):
# Install PoseViz from https://github.com/isarandi/poseviz
import poseviz
import cameralib
camera = cameralib.Camera.from_fov(55, image.shape)
viz = poseviz.PoseViz(joint_names, joint_edges)
viz.update(frame=image, boxes=pred['boxes'], poses=pred['poses3d'], camera=camera)
def visualize_matplotlib(image, pred, joint_names, joint_edges):
detections, poses3d, poses2d = pred['boxes'], pred['poses3d'], pred['poses2d']
import matplotlib.pyplot as plt
# noinspection PyUnresolvedReferences
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.patches import Rectangle
plt.switch_backend('TkAgg')
fig = plt.figure(figsize=(10, 5.2))
image_ax = fig.add_subplot(1, 2, 1)
image_ax.imshow(image)
for x, y, w, h in detections[:, :4]:
image_ax.add_patch(Rectangle((x, y), w, h, fill=False))
pose_ax = fig.add_subplot(1, 2, 2, projection='3d')
pose_ax.view_init(5, -85)
pose_ax.set_xlim3d(-1500, 1500)
pose_ax.set_zlim3d(-1500, 1500)
pose_ax.set_ylim3d(0, 3000)
pose_ax.set_box_aspect((1, 1, 1))
# Matplotlib plots the Z axis as vertical, but our poses have Y as the vertical axis.
# Therefore, we do a 90° rotation around the X axis:
poses3d[..., 1], poses3d[..., 2] = poses3d[..., 2], -poses3d[..., 1]
for pose3d, pose2d in zip(poses3d, poses2d):
for i_start, i_end in joint_edges:
image_ax.plot(*zip(pose2d[i_start], pose2d[i_end]), marker='o', markersize=2)
pose_ax.plot(*zip(pose3d[i_start], pose3d[i_end]), marker='o', markersize=2)
image_ax.scatter(*pose2d.T, s=2)
pose_ax.scatter(*pose3d.T, s=2)
fig.tight_layout()
plt.show()
if __name__ == '__main__':
main()