Optimus is an opinionated python library to easily load, process, plot and create ML models that run over pandas, Dask, cuDF, dask-cuDF, Vaex or Spark.
Some amazing things Optimus can do for you:
- Process using a simple API, making it easy to use for newcomers.
- More than 100 functions to handle strings, process dates, urls and emails.
- Easily plot data from any size.
- Out of box functions to explore and fix data quality.
- Use the same code to process your data in your laptop or in a remote cluster of GPUs.
To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges:
In your terminal just type:
pip install pyoptimus
By default Optimus install Pandas as the default engine, to install other engines you can use the following commands:
Engine | Command |
---|---|
Dask | pip install pyoptimus[dask] |
cuDF | pip install pyoptimus[cudf] |
Dask-cuDF | pip install pyoptimus[dask-cudf] |
Vaex | pip install pyoptimus[vaex] |
Spark | pip install pyoptimus[spark] |
To install from the repo:
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5
To install other engines:
pip install git+https://github.com/hi-primus/optimus.git@develop-23.5#egg=pyoptimus[dask]
- Python 3.7 or 3.8
You can go to 10 minutes to Optimus where you can find the basics to start working in a notebook.
Also you can go to the Examples section and find specific notebooks about data cleaning, data munging, profiling, data enrichment and how to create ML and DL models.
Here's a handy Cheat Sheet with the most common Optimus' operations.
Start Optimus using "pandas"
, "dask"
, "cudf"
,"dask_cudf"
,"vaex"
or "spark"
.
from optimus import Optimus
op = Optimus("pandas")
Now Optimus can load data in csv, json, parquet, avro and excel formats from a local file or from a URL.
#csv
df = op.load.csv("../examples/data/foo.csv")
#json
df = op.load.json("../examples/data/foo.json")
# using a url
df = op.load.json("https://raw.githubusercontent.com/hi-primus/optimus/develop-23.5/examples/data/foo.json")
# parquet
df = op.load.parquet("../examples/data/foo.parquet")
# ...or anything else
df = op.load.file("../examples/data/titanic3.xls")
Also, you can load data from Oracle, Redshift, MySQL and Postgres databases.
#csv
df.save.csv("data/foo.csv")
# json
df.save.json("data/foo.json")
# parquet
df.save.parquet("data/foo.parquet")
You can also save data to oracle, redshift, mysql and postgres.
Also, you can create a dataframe from scratch
df = op.create.dataframe({
'A': ['a', 'b', 'c', 'd'],
'B': [1, 3, 5, 7],
'C': [2, 4, 6, None],
'D': ['1980/04/10', '1980/04/10', '1980/04/10', '1980/04/10']
})
Using display
you have a beautiful way to show your data with extra information like column number, column data type and marked white spaces.
display(df)
Optimus was created to make data cleaning a breeze. The API was designed to be super easy to newcomers and very familiar for people that comes from Pandas.
Optimus expands the standard DataFrame functionality adding .rows
and .cols
accessors.
For example you can load data from a url, transform and apply some predefined cleaning functions:
new_df = df\
.rows.sort("rank", "desc")\
.cols.lower(["names", "function"])\
.cols.date_format("date arrival", "yyyy/MM/dd", "dd-MM-YYYY")\
.cols.years_between("date arrival", "dd-MM-YYYY", output_cols="from arrival")\
.cols.normalize_chars("names")\
.cols.remove_special_chars("names")\
.rows.drop(df["rank"]>8)\
.cols.rename("*", str.lower)\
.cols.trim("*")\
.cols.unnest("japanese name", output_cols="other names")\
.cols.unnest("last position seen", separator=",", output_cols="pos")\
.cols.drop(["last position seen", "japanese name", "date arrival", "cybertronian", "nulltype"])
Feedback is what drive Optimus future, so please take a couple of minutes to help shape the Optimus' Roadmap: http://bit.ly/optimus_survey
Also if you want to a suggestion or feature request use https://github.com/hi-primus/optimus/issues
If you have issues, see our Troubleshooting Guide
Contributions go far beyond pull requests and commits. We are very happy to receive any kind of contributions
including:
- Documentation updates, enhancements, designs, or bugfixes.
- Spelling or grammar fixes.
- README.md corrections or redesigns.
- Adding unit, or functional tests
- Triaging GitHub issues -- especially determining whether an issue still persists or is reproducible.
- Blogging, speaking about, or creating tutorials about Optimus and its many features.
- Helping others on our official chats
Become a backer or a sponsor and get your image on our README on Github with a link to your site.