-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacematchform.asv
152 lines (131 loc) · 6.36 KB
/
facematchform.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
% This function generates the face recognition form. This form takes the
% user id and then brings the preview window where the user takes a
% snapshot from the webcam. Then detects the face region after pressing the
% 'Detect Face' button. Finally, tries to match the face region by first,
% convolving it using 40 different Gabor phase representations, then,
% encoding then using LGBP operator and finally, extracting local
% histograms from partitioned LGBP images.
% We use a global similarity measure threshold to recognize face image.The recognition
% system works as follows:
% 1. For each of the 40 filters, we match the target image in the database associated with
% the given id and find its similarity measure with the probe image.
% if the the similariy measure calculated using Histogram Intersection classifier is greater than or
% equal to the similarity measure threshold of the current filter, then assign the previously calculated
% filter weight to the similarity matrix SM (size 40x1).
% 2. Using already calculated weights for each of the 40 Gabor phase filters,
% we create a simiarity matrix SM of size 40x1 that holds the
% corresponding filter weight if that filter matched an image in the database with the given
% subject id, otherwise, holds 0.
% 3. From this SM, we add the weighted votes, if the weighted vote >= threshold,
% we consider that as the match for the given face image.
function facematchform()
figure('Name', 'Face Recognition System', 'Menubar', 'None');
uicontrol('String', 'Start', 'Callback', @start_Callback, 'Position', [20 20 100 20]);
stop_btn = uicontrol('String', 'Stop', 'Callback', @stop_Callback, 'Position', [120 20 100 20], 'Enable', 'off');
snapshot_btn = uicontrol('String', 'Detect Face', 'Callback', @Take_Snapshot_Callback, 'Position', [220 20 100 20], 'Enable', 'off');
match_btn = uicontrol('String', 'Match Face', 'Callback', @matchface_Callback, 'Position', [320 20 100 20], 'Enable', 'off');
function start_Callback(source, eventdata)
set(stop_btn, 'Enable', 'off');
set(snapshot_btn, 'Enable', 'off');
set(match_btn, 'Enable', 'off');
while(1)
id = inputdlg('Enter your ID:');
if(~isempty(id))
val = str2double(id{1});
if(val > 0)
assignin('base', 'id', id{1});
break;
end
end
end
obj = videoinput('winvideo',1);
vidRes = get(obj, 'VideoResolution');
nBands = get(obj, 'NumberOfBands');
hImage = image( zeros(vidRes(2), vidRes(1), nBands) );
axis off; % Remove axis ticks and numbers
% base workspace is the workspace that is seen from the MATLAB command
% line (when not in the debugger).
assignin('base', 'obj', obj);
assignin('base', 'hImage', hImage);
preview(obj, hImage);
set(stop_btn, 'Enable', 'on');
end
function stop_Callback(source, eventdata)
obj = evalin('base', 'obj');
stoppreview(obj);
set(snapshot_btn, 'Enable', 'on');
end
function Take_Snapshot_Callback(source, eventdata)
id = evalin('base', 'id');
hImage = evalin('base', 'hImage');
I = FaceDetectCrop(getimage(imgcf));
assignin('base', 'I', I);
set(match_btn, 'Enable', 'on');
end
function matchface_Callback(source, eventdata)
%the 40 filter weights in a column vector
weight = [
0.0287; 0.0320; 0.0309; 0.0188; 0.0151;
0.0273; 0.0306; 0.0280; 0.0192; 0.0099;
0.0284; 0.0331; 0.0291; 0.0247; 0.0114;
0.0298; 0.0309; 0.0258; 0.0243; 0.0203;
0.0295; 0.0295; 0.0262; 0.0210; 0.0129;
0.0309; 0.0284; 0.0269; 0.0210; 0.0180;
0.0284; 0.0298; 0.0302; 0.0262; 0.0136;
0.0309; 0.0324; 0.0302; 0.0210; 0.0147 ];
filter_sim_threshold = [
12288; 11520; 11648; 13952; 14720;
12800; 13184; 13568; 15104; 16000;
11904; 11392; 11264; 13440; 15360;
12800; 13056; 14464; 14208; 15232;
12288; 11520; 11776; 13952; 16128;
12800; 13056; 13696; 14592; 14720;
11904; 11392; 11136; 13568; 15488;
12800; 13184; 13568; 14976; 16128 ];
id = evalin('base', 'id');
I = evalin('base', 'I');
% LH_Pha_q contains the 40 cell arrays of local histograms of the
% probe image
LH_Pha_q = encoding(I, id, 'phase');
assignin('base', 'LH_Pha', LH_Pha_q);
load(['data\' id]); % load the matfile containing the local histograms of the id
% LH_Pha_List contains at each row, the 40 cell array of local histograms for
% each subject
LH_Pha_List = data(1, 11:50);
SM = cell(40,1); % similarity matrix
for f = 1:40
% converting 1x16384 to 64x(1x256)
lh_pha_t = mat2cell(LH_Pha_List{f}, 1, ...
[256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256,...
256,256,256,256,256,256,256,256]);
sim_pha = direct_matching(LH_Pha_q{f}, lh_pha_t, 64, 'direct');
if sim_pha >= filter_sim_threshold(f)
SM{f,1} = weight(f);
else
SM{f,1} = 0;
end
end
s = 0;
for i = 1:length(SM)
s = s + SM{i,1};
end
% display(['s=' num2str(s)]);
% find winner
weight_threshold = 0.18;
if s >= weight_threshold
if strcmp(data{1}, id) == 1
dbImg = data{2};
figure('Name', 'Face Identification Successful');
imshow(dbImg/max(max(dbImg)));
end
else
msgbox('Face Not Recognized', 'Face Identification Result');
end
end
end