
ConcatVsAppend

November 25, 2023

1 Concat vs Append
It is well known that “concatenating” objects incrementally in languages with automatic memory
allocation and garbage collection (like Python, or Java) is really a bad idea.

Consider the simple piece of code

total = empty
for part in parts:

total = total + part

where + has to be intended as some concatenation operation, and parts has 𝑁 components of size
𝑆 each.

At every iteration the loop will create an instance of total of increasing size: at first 𝑆, then 2 ⋅ 𝑆,
up to the last instance of size 𝑁 ⋅ 𝑆. Of course the 𝑁 − 1 intermediate instances of total will be
at some point garbage collected, but it is inevitable to create increasing size concatenation in the
process.

So the total space allocated will be 𝑆 + 2 ⋅ 𝑆 + ⋯ + 𝑁 ⋅ 𝑆 = 𝑆 ⋅ (1 + 2 + ⋯ 𝑁) = 𝑆 ⋅ 𝑁 ⋅ (𝑁 −1)/2, that
is a space proportional to 𝑁2. The larger the number of parts, the worst this approach becomes.

It is very easy to see this issue in practice. Let’s start for simplicity with list concatenation; populate
parts with 10k list of 100 integers.

[1]: parts = [list(range(100)) for _ in range(10_000)]

If we start from an empty list and perform iterative concatenations, it will take a lot of time

[12]: %%time

slow_all_parts = []
for part in parts:

slow_all_parts = slow_all_parts + part

CPU times: user 6.68 s, sys: 8.74 ms, total: 6.69 s
Wall time: 6.73 s

By extending the list (an operation that does not create 𝑁 instances, one per iterate, but that
copies part at the end of fast_all_parts), the time is three orders of magnitude smaller.

1



[13]: %%time

fast_all_parts = []
for part in parts:

fast_all_parts.extend(part)

CPU times: user 2.34 ms, sys: 4.64 ms, total: 6.98 ms
Wall time: 7.07 ms

The results, obviously, coincide.

[4]: slow_all_parts == fast_all_parts

[4]: True

Let turn to Pandas. Let’s transform our lists in DataFrames

[14]: import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

import pandas as pd

data_frames = [pd.DataFrame(part) for part in parts]

Present code in ms2query uses append that creates a new intermediate dataframe at every iteration.
The execution time is again very high.

[16]: %%time

slow_all_dataframes = pd.DataFrame()
for df in data_frames:

slow_all_dataframes = slow_all_dataframes.append(df)

CPU times: user 7.21 s, sys: 475 ms, total: 7.68 s
Wall time: 7.68 s

The code emits warning suggesting to use concat in place of append; this will not change much,
since also this method will create intermediate results of growing size.

[17]: %%time

slow_all_dataframes = pd.DataFrame()
for df in data_frames:

slow_all_dataframes = pd.concat([slow_all_dataframes, df])

CPU times: user 6.25 s, sys: 371 ms, total: 6.62 s
Wall time: 6.63 s

Again, the real advantage comes from using the correct approach, that avoids completely the
creation of intermediate concatenations.

2



[18]: %%time

fast_all_dataframes = pd.concat(data_frames)

CPU times: user 93.2 ms, sys: 3.47 ms, total: 96.7 ms
Wall time: 95.6 ms

The advantage now is of two orders of magnitude, but remains still worth considering! And of
course the difference will be much more relevant if the number of objects that we concatenate will
grow.

Again, the two results of course coincide.

[23]: slow_all_dataframes.equals(fast_all_dataframes)

[23]: True

3


	Concat vs Append

