This repository has been archived by the owner on Dec 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathINTUEasingFunctions.m
285 lines (252 loc) · 8.05 KB
/
INTUEasingFunctions.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//
// INTUEasingFunctions.m
// https://github.com/intuit/AnimationEngine
//
// Copyright (c) 2014-2015 Intuit Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
#import "INTUEasingFunctions.h"
#include <math.h>
// Modeled after the line y = x
INTUEasingFunction INTULinear = ^CGFloat (CGFloat p) {
return p;
};
// Modeled after quarter-cycle of sine wave
INTUEasingFunction INTUEaseInSine = ^CGFloat (CGFloat p) {
return sin((p - 1) * M_PI_2) + 1;
};
// Modeled after quarter-cycle of sine wave (different phase)
INTUEasingFunction INTUEaseOutSine = ^CGFloat (CGFloat p) {
return sin(p * M_PI_2);
};
// Modeled after half sine wave
INTUEasingFunction INTUEaseInOutSine = ^CGFloat (CGFloat p) {
return 0.5 * (1 - cos(p * M_PI));
};
// Modeled after the parabola y = x^2
INTUEasingFunction INTUEaseInQuadratic = ^CGFloat (CGFloat p) {
return p * p;
};
// Modeled after the parabola y = -x^2 + 2x
INTUEasingFunction INTUEaseOutQuadratic = ^CGFloat (CGFloat p) {
return -(p * (p - 2));
};
// Modeled after the piecewise quadratic
// y = (1/2)((2x)^2) ; [0, 0.5)
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutQuadratic = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 2 * p * p;
}
else
{
return (-2 * p * p) + (4 * p) - 1;
}
};
// Modeled after the cubic y = x^3
INTUEasingFunction INTUEaseInCubic = ^CGFloat (CGFloat p) {
return p * p * p;
};
// Modeled after the cubic y = (x - 1)^3 + 1
INTUEasingFunction INTUEaseOutCubic = ^CGFloat (CGFloat p) {
CGFloat f = (p - 1);
return f * f * f + 1;
};
// Modeled after the piecewise cubic
// y = (1/2)((2x)^3) ; [0, 0.5)
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutCubic = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 4 * p * p * p;
}
else
{
CGFloat f = ((2 * p) - 2);
return 0.5 * f * f * f + 1;
}
};
// Modeled after the quartic x^4
INTUEasingFunction INTUEaseInQuartic = ^CGFloat (CGFloat p) {
return p * p * p * p;
};
// Modeled after the quartic y = 1 - (x - 1)^4
INTUEasingFunction INTUEaseOutQuartic = ^CGFloat (CGFloat p) {
CGFloat f = (p - 1);
return f * f * f * (1 - p) + 1;
};
// Modeled after the piecewise quartic
// y = (1/2)((2x)^4) ; [0, 0.5)
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutQuartic = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 8 * p * p * p * p;
}
else
{
CGFloat f = (p - 1);
return -8 * f * f * f * f + 1;
}
};
// Modeled after the quintic y = x^5
INTUEasingFunction INTUEaseInQuintic = ^CGFloat (CGFloat p) {
return p * p * p * p * p;
};
// Modeled after the quintic y = (x - 1)^5 + 1
INTUEasingFunction INTUEaseOutQuintic = ^CGFloat (CGFloat p) {
CGFloat f = (p - 1);
return f * f * f * f * f + 1;
};
// Modeled after the piecewise quintic
// y = (1/2)((2x)^5) ; [0, 0.5)
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutQuintic = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 16 * p * p * p * p * p;
}
else
{
CGFloat f = ((2 * p) - 2);
return 0.5 * f * f * f * f * f + 1;
}
};
// Modeled after the exponential function y = 2^(10(x - 1))
INTUEasingFunction INTUEaseInExponential = ^CGFloat (CGFloat p) {
return (p == 0.0) ? p : pow(2, 10 * (p - 1));
};
// Modeled after the exponential function y = -2^(-10x) + 1
INTUEasingFunction INTUEaseOutExponential = ^CGFloat (CGFloat p) {
return (p == 1.0) ? p : 1 - pow(2, -10 * p);
};
// Modeled after the piecewise exponential
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
INTUEasingFunction INTUEaseInOutExponential = ^CGFloat (CGFloat p) {
if(p == 0.0 || p == 1.0) return p;
if(p < 0.5)
{
return 0.5 * pow(2, (20 * p) - 10);
}
else
{
return -0.5 * pow(2, (-20 * p) + 10) + 1;
}
};
// Modeled after shifted quadrant IV of unit circle
INTUEasingFunction INTUEaseInCircular = ^CGFloat (CGFloat p) {
return 1 - sqrt(1 - (p * p));
};
// Modeled after shifted quadrant II of unit circle
INTUEasingFunction INTUEaseOutCircular = ^CGFloat (CGFloat p) {
return sqrt((2 - p) * p);
};
// Modeled after the piecewise circular function
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutCircular = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 0.5 * (1 - sqrt(1 - 4 * (p * p)));
}
else
{
return 0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
}
};
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
INTUEasingFunction INTUEaseInBack = ^CGFloat (CGFloat p) {
return p * p * p - p * sin(p * M_PI);
};
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
INTUEasingFunction INTUEaseOutBack = ^CGFloat (CGFloat p) {
CGFloat f = (1 - p);
return 1 - (f * f * f - f * sin(f * M_PI));
};
// Modeled after the piecewise overshooting cubic function:
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutBack = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
CGFloat f = 2 * p;
return 0.5 * (f * f * f - f * sin(f * M_PI));
}
else
{
CGFloat f = (1 - (2*p - 1));
return 0.5 * (1 - (f * f * f - f * sin(f * M_PI))) + 0.5;
}
};
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
INTUEasingFunction INTUEaseInElastic = ^CGFloat (CGFloat p) {
return sin(13 * M_PI_2 * p) * pow(2, 10 * (p - 1));
};
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
INTUEasingFunction INTUEaseOutElastic = ^CGFloat (CGFloat p) {
return sin(-13 * M_PI_2 * (p + 1)) * pow(2, -10 * p) + 1;
};
// Modeled after the piecewise exponentially-damped sine wave:
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
INTUEasingFunction INTUEaseInOutElastic = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 0.5 * sin(13 * M_PI_2 * (2 * p)) * pow(2, 10 * ((2 * p) - 1));
}
else
{
return 0.5 * (sin(-13 * M_PI_2 * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2);
}
};
INTUEasingFunction INTUEaseInBounce = ^CGFloat (CGFloat p) {
return 1 - INTUEaseOutBounce(1 - p);
};
INTUEasingFunction INTUEaseOutBounce = ^CGFloat (CGFloat p) {
if(p < 4/11.0)
{
return (121 * p * p)/16.0;
}
else if(p < 8/11.0)
{
return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0;
}
else if(p < 9/10.0)
{
return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0;
}
else
{
return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0;
}
};
INTUEasingFunction INTUEaseInOutBounce = ^CGFloat (CGFloat p) {
if(p < 0.5)
{
return 0.5 * INTUEaseInBounce(p*2);
}
else
{
return 0.5 * INTUEaseOutBounce(p * 2 - 1) + 0.5;
}
};