-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathimage_recognition_zhihu.py
202 lines (148 loc) · 6.75 KB
/
image_recognition_zhihu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding:UTF-8 -*-
import requests , time ,random
import hmac ,json ,base64
from bs4 import BeautifulSoup
from hashlib import sha1
import TencentYoutuyun
from PIL import Image
import uuid
def recognition_captcha(data):
''' 识别验证码 '''
file_id = str(uuid.uuid1())
filename = 'captcha_'+ file_id +'.gif'
filename_png = 'captcha_'+ file_id +'.png'
if(data is None):
return
data = base64.b64decode(data.encode('utf-8'))
with open( filename ,'wb') as fb:
fb.write( data )
appid = 'appid' # 接入优图服务,注册账号获取
secret_id = 'secret_id'
secret_key = 'secret_key'
userid= 'userid'
end_point = TencentYoutuyun.conf.API_YOUTU_END_POINT
youtu = TencentYoutuyun.YouTu(appid, secret_id, secret_key, userid, end_point) # 初始化
# 拿到的是gif格式,而优图只支持 JPG PNG BMP 其中之一,这时我们需要 pip install Pillow 来转换格式
im = Image.open( filename)
im.save( filename_png ,"png")
im.close()
result = youtu.generalocr( filename_png , data_type = 0 , seq = '') # 0代表本地路径,1代表url
return result
def get_captcha(sessiona,headers):
''' 获取验证码 '''
need_cap = False
while( need_cap is not True):
try:
sessiona.get('https://www.zhihu.com/signin',headers=headers) # 拿cookie:_xsrf
resp2 = sessiona.get('https://www.zhihu.com/api/v3/oauth/captcha?lang=cn',headers=headers) # 拿cookie:capsion_ticket
need_cap = json.loads(resp2.text)["show_captcha"] # {"show_captcha":false} 表示不用验证码
time.sleep( 0.5 + random.randint(1,9)/10 )
except Exception:
continue
try:
resp3 = sessiona.put('https://www.zhihu.com/api/v3/oauth/captcha?lang=cn',headers=headers) # 拿到验证码数据,注意是put
img_data = json.loads(resp3.text)["img_base64"]
except Exception:
return
return img_data
def create_point( point_data, confidence ):
''' 获得点阵 '''
# 实际操作下,套路不深,x间隔25,y相同,共7个点 ,先模拟意思一下
points = {1:[ 20.5,25.1875],2:[ 45.5,25.1875],3:[ 70.5,25.1875],4:[ 95.5,25.1875],5:[120.5,25.1875],6:[145.5,25.1875],7:[170.5,25.1875]}
wi = 0
input_points = []
for word in ( point_data['items'][0]['words'] ):
wi = wi+1
if( word['confidence'] < confidence ):
try:
input_points.append(points[wi]) # 倒置的中文,优图识别不出来,置信度会低于0.5
except KeyError:
continue
if( len(input_points) > 2 or len(input_points) == 0 ):
return [] # 7个字中只有2个倒置中文的成功率高
result = {}
result['img_size']=[200,44]
result['input_points']=input_points
result = json.dumps(result)
print(result)
return result
def bolting(k_low,k_hi,k3_confidence):
''' 筛选把握大的进行验证 '''
start = time.time()
is_success = False
while(is_success is not True):
points_len = 1
angle = -20
img_ko = []
while(points_len != 21 or angle < k_low or angle > k_hi ):
img_data = get_captcha(sessiona,headers)
img_ko = recognition_captcha(img_data)
## json.dumps 序列化时对中文默认使用的ascii编码.想输出真正的中文需要指定ensure_ascii=False
# img_ko_json = json.dumps(img_ko , indent =2 ,ensure_ascii=False )
# img_ko_json = img_ko_json.encode('raw_unicode_escape') ## 因为python3的原因,也因为优图自身的原因,此处要特殊处理
# with open( "json.txt" ,'wb') as fb:
# fb.write( img_ko_json )
try:
points_len = len(img_ko['items'][0]['itemstring'])
angle = img_ko['angle']
except Exception:
points_len = 1
angle = -20
continue
# print(img_ko_json.decode('utf8')) ## stdout用的是utf8,需转码才能正常显示
# print('-'*50)
input_text = create_point( img_ko ,k3_confidence )
if(type(input_text) == type([])):
continue
data = {
"input_text":input_text
}
# 提交过快会被拒绝,{"code":120005,"name":"ERR_VERIFY_CAPTCHA_TOO_QUICK"} ,假装思考5秒钟
time.sleep( 4 + random.randint(1,9)/10 )
try:
resp5 = sessiona.post('https://www.zhihu.com/api/v3/oauth/captcha?lang=cn',data,headers=headers)
except Exception:
continue
print("angle: "+ str(angle) )
print(BeautifulSoup(resp5.content ,'html.parser')) # 如果验证成功,会回应{"success":true},开心
print('-'*50)
try:
is_success = json.loads(resp5.text)["success"]
except KeyError:
continue
end = time.time()
return end-start
if __name__ == "__main__":
sessiona = requests.Session()
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0','authorization':'oauth c3cef7c66a1843f8b3a9e6a1e3160e20'}
k3_confidence = 0.71
'''
# 可视化数据会被保存在云端供浏览
# https://plot.ly/~weldon2010/4
# 纯属学习,并未看出"角度"范围扩大对图像识别的影响,大部分时候60s内能搞定,说明优图还是很强悍的,识别速度也非常快
'''
runtime_list_x = []
runtime_list_y = []
nn = range(1,11) # 愿意的话搞多线程,1百万次更有意思
# 成功尝试100次,形成2维数据以热力图的方式展示
for y in nn :
for x in nn :
runtime_list_x.append( bolting(-3,3,k3_confidence) )
print( "y: " + str(runtime_list_y) )
print( "x: " + str(runtime_list_x) )
runtime_list_y.append(runtime_list_x.copy())
runtime_list_x = []
print ("-"*30)
print( runtime_list_y )
print ("-"*30)
# pip install plotly 数据可视化
import plotly
import plotly.graph_objs as go
plotly.tools.set_credentials_file(username='username', api_key='username') # 设置账号,去官网注册
trace = go.Heatmap(z = runtime_list_y , x = [n for n in nn ] ,y =[n for n in nn ])
data=[trace]
plotly.plotly.plot(data, filename='weldon-time2-heatmap')
# 尝试后发现一个特点,基本都是1~2个倒置中文,这样我们可以借此提速
# 角度范围放大,仅当识别出倒置中文为1~2个时才提交验证否则放弃继续寻找
### chcp 65001 (win下改变cmd字符集)
### python c:\python34\image_recognition_zhihu.py