-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpipeline_utils.py
256 lines (218 loc) · 8.64 KB
/
pipeline_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
import os
import shutil
from abc import ABC, abstractmethod
from glob import glob
from parser import DataArguments, ModelArguments
import datasets
import torch
import transformers
import wandb
from datasets import DatasetDict
from transformers import TrainingArguments, set_seed
from transformers.trainer_utils import get_last_checkpoint
from tasks.opp_115 import load_opp_115
from tasks.piextract import load_piextract
from tasks.policy_detection import load_policy_detection
from tasks.policy_ie_a import load_policy_ie_a
from tasks.policy_ie_b import load_policy_ie_b
from tasks.policy_qa import load_policy_qa
from tasks.privacy_qa import load_privacy_qa
from utils.logging_utils import add_file_handler, init_logger
class SuccessFileFoundException(Exception):
pass
class Privacy_GLUE_Pipeline(ABC):
def __init__(
self,
data_args: DataArguments,
model_args: ModelArguments,
train_args: TrainingArguments,
success_file: str = ".success",
) -> None:
self.data_args = data_args
self.model_args = model_args
self.train_args = train_args
self.success_file = success_file
def _get_data(self) -> DatasetDict:
# define new argument based on task name
task_dir = os.path.join(self.data_args.data_dir, self.data_args.task)
# load dataset based on task name
if self.data_args.task == "opp_115":
data = load_opp_115(task_dir)
elif self.data_args.task == "piextract":
data = load_piextract(task_dir)
elif self.data_args.task == "policy_detection":
data = load_policy_detection(task_dir)
elif self.data_args.task == "policy_ie_a":
data = load_policy_ie_a(task_dir)
elif self.data_args.task == "policy_ie_b":
data = load_policy_ie_b(task_dir)
elif self.data_args.task == "policy_qa":
data = load_policy_qa(task_dir)
elif self.data_args.task == "privacy_qa": # pragma: no branch
data = load_privacy_qa(task_dir)
return data
def _init_run_dir(self) -> None:
if (
os.path.exists(self.train_args.output_dir)
and self.train_args.overwrite_output_dir
):
# delete run directory if it exists
shutil.rmtree(self.train_args.output_dir)
# create output_dir if it does not exit
os.makedirs(self.train_args.output_dir, exist_ok=True)
def _init_root_logger(self) -> None:
# initialize root logger
self.logger = logging.getLogger()
init_logger(self.logger, self.train_args.get_process_log_level())
add_file_handler(
self.logger,
self.train_args.get_process_log_level(),
os.path.join(self.train_args.output_dir, "session.log"),
)
def _init_third_party_loggers(self) -> None:
# set logger verbosity
datasets.utils.logging.set_verbosity(self.train_args.get_process_log_level())
transformers.utils.logging.set_verbosity(
self.train_args.get_process_log_level()
)
# disable any default handlers since we take the root logger's
transformers.utils.logging.disable_default_handler()
# allow for propagation to the root logger to prevent double configurations
datasets.utils.logging.enable_propagation()
transformers.utils.logging.enable_propagation()
def _check_for_success_file(self) -> None:
# check for existing exit code and decide action
if (
os.path.exists(os.path.join(self.train_args.output_dir, self.success_file))
and not self.train_args.overwrite_output_dir
and self.train_args.do_train
):
message = (
f"{self.success_file} file found; therefore training already complete"
)
self.logger.info(message)
raise SuccessFileFoundException(message)
def _dump_misc_args(self) -> None:
# dump miscellaneous arguments
torch.save(
{"data_args": self.data_args, "model_args": self.model_args},
os.path.join(self.train_args.output_dir, "misc_args.bin"),
)
def _log_starting_arguments(self) -> None:
# log summary and arguments in each process
self.logger.info(
(
f"Process rank: {self.train_args.local_rank}, "
f"device: {self.train_args.device}, "
f"n_gpu: {self.train_args.n_gpu}, "
f"distributed training: {bool(self.train_args.local_rank != -1)}, "
f"16-bits training: {self.train_args.fp16}"
)
)
self.logger.info(f"Data arguments: {self.data_args}")
self.logger.info(f"Model arguments: {self.model_args}")
self.logger.info(f"Training arguments: {self.train_args}")
def _set_global_seeds(self) -> None:
# set seed before initializing model
set_seed(self.train_args.seed)
def _find_existing_checkpoint(self) -> None:
# detect last checkpoint if necessary
if self.train_args.do_train and not self.train_args.overwrite_output_dir:
# use upstream function for detection
self.last_checkpoint = get_last_checkpoint(self.train_args.output_dir)
# check if checkpoint exists
if self.last_checkpoint is not None:
self.logger.warning(
"Checkpoint detected, resuming training from "
f"{self.last_checkpoint}. To avoid this behavior, change "
"--output_dir or add --overwrite_output_dir to train from scratch"
)
else:
self.last_checkpoint = None
def _init_wandb_run(self) -> None:
if "wandb" in self.train_args.report_to:
wandb.init(
name=(
f"{self.model_args.wandb_group_id[11:]}"
f"_seed_{str(self.train_args.seed)}"
),
group=self.model_args.wandb_group_id,
project=f"privacyGLUE-{self.data_args.task}",
reinit=True,
resume=True if self.last_checkpoint else None,
)
def _clean_checkpoint_dirs(self) -> None:
if self.model_args.do_clean and self.train_args.do_train:
for checkpoint in glob(
os.path.join(self.train_args.output_dir, "checkpoint*")
):
shutil.rmtree(checkpoint)
def _save_success_file(self) -> None:
if self.train_args.do_train:
with open(
os.path.join(self.train_args.output_dir, self.success_file), "w"
) as output_file_stream:
output_file_stream.write("0\n")
def _clean_loggers(self) -> None:
datasets.utils.logging.get_logger().handlers = []
transformers.utils.logging.get_logger().handlers = []
if hasattr(self, "logger"):
self.logger.handlers = []
def _close_wandb(self) -> None:
if "wandb" in self.train_args.report_to and wandb.run is not None:
wandb.run.finish()
def _destroy(self) -> None:
# some variables are not freed automatically by pytorch and can quickly
# fill up memory.
self.trainer = None
del self
@abstractmethod
def _retrieve_data(self) -> None:
pass
@abstractmethod
def _load_pretrained_model_and_tokenizer(self) -> None:
pass
@abstractmethod
def _apply_preprocessing(self) -> None:
pass
@abstractmethod
def _set_metrics(self) -> None:
pass
@abstractmethod
def _run_train_loop(self) -> None:
pass
def run_start(self) -> None:
self._init_run_dir()
self._init_root_logger()
self._init_third_party_loggers()
self._check_for_success_file()
self._dump_misc_args()
self._log_starting_arguments()
self._set_global_seeds()
self._find_existing_checkpoint()
self._init_wandb_run()
def run_task(self) -> None:
self._retrieve_data()
self._load_pretrained_model_and_tokenizer()
self._apply_preprocessing()
self._set_metrics()
self._run_train_loop()
def run_end(self) -> None:
self._clean_checkpoint_dirs()
self._save_success_file()
def run_finally(self) -> None:
self._clean_loggers()
self._close_wandb()
self._destroy()
def run_pipeline(self) -> None:
try:
self.run_start()
self.run_task()
self.run_end()
except SuccessFileFoundException:
pass
finally:
self.run_finally()