-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
49 lines (37 loc) · 1.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import argparse
import json
import numpy as np
import os
from warofwords import WarOfWords, TrainedWarOfWords
def train(data_path, model_path, regularizer):
"""Train a model on a given dataset.
Save the trained model to `model_path`.
"""
# Load data.
data_path = os.path.abspath(data_path)
print(f'Loading {data_path}')
features, featmats, labels = WarOfWords.load_data(data_path)
train = list(zip(featmats, labels))
# Initialize the model.
hyperparams = WarOfWords.Hyperparameters(regularizer=regularizer)
model = WarOfWords(train, features, hyperparams, bias_key='bias')
# Train the model.
print(f'Training the model (regularizer={regularizer})...')
params, cost = model.fit()
llh = model.log_likelihood(params['params'].as_array())
print(f'Log-likelihood: {llh:.2f}')
# Initialize a trained model.
trained = TrainedWarOfWords(features, hyperparams, **params)
# Save the trained model.
model_path = os.path.abspath(model_path)
trained.save(model_path)
print(f'Saved model to {model_path}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', required=True, help='Path to data')
parser.add_argument('--model_path', required=True,
help='Path to saved model')
parser.add_argument('--regularizer', type=float, required=True,
help='Regularizer',)
args = parser.parse_args()
train(args.data_path, args.model_path, args.regularizer)