-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreport.py
136 lines (119 loc) · 4.7 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""Generate reports based on data provided via a Data object.
Classes:
Report -- Contains methods to generate and output appropriate HTML for the
report.
"""
from template import *
class Report(object):
"""The main report object.
Methods:
__init__ -- Initialise the object and create required local variables.
empty_columns -- Return empty columns in the data object.
html_report -- Create HTML report and output to file.
list_creator -- Helper method to generate a HTML list from provided input.
row_creator -- Helper method to generate HTML rows from provided input.
numerical_analysis -- Return numerical based statistics on input.
string_analysis -- Return string based statistics on input.
enum_analysis -- Return enumeration based statistics on input.
bool_analysis -- Return boolean based statistics on input.
Variables:
data -- Reference to Data object.
file -- Reference to CSV file.
"""
def __init__(self, data, file):
"""Initialise the Report object and assign local variables.
Arguments:
data -- The processed CSV data object.
file -- The filename of the report.
"""
self.data = data
self.file_name = file
def empty_columns(self):
"""Return a list of empty rows in the data object."""
return [column.header for column in self.data.columns if column.empty]
def html_report(self):
"""Write a HTML file based on analysis of CSV file."""
html = base_template.format(
header=self.file_name,
len_invalid_rows=len(self.data.invalid_rows),
invalid_rows=self.list_creator(self.data.invalid_rows),
empty_columns=self.list_creator(self.empty_columns()),
len_empty_columns=len(self.empty_columns()),
len_columns=len(self.data.valid_rows),
numerical_analysis=self.numerical_analysis(),
string_analysis=self.string_analysis(),
enum_analysis=self.enum_analysis()
)
html_file = open("{}_report.html".format(self.file_name), "w")
html_file.write(html)
html_file.close()
@staticmethod
def list_creator(list_items):
"""Return provided list as an unordered HTML list.
Arguments:
list_items -- List of items to be turned into HTML.
"""
html_list = '<ul>'
if list_items:
for item in list_items:
html_list += '<li>' + str(item) + '</li>'
else:
html_list += '<li>' + 'Empty' + '</li>'
html_list += '</ul>'
return html_list
@staticmethod
def row_creator(row_items):
"""Return provided list as HTML rows.
Arguments:
row_items -- List of items to be turned into HTML.
"""
html_row = '<tr>'
for item in row_items:
html_row += '<td>' + str(item) + '</td>'
html_row += '</tr>'
return html_row
def numerical_analysis(self):
"""Return HTML string of numerical analysis on columns of type Float or
Integer in the data object.
"""
rows = ''
for column in self.data.columns:
if column.type == 'Float' or column.type == 'Integer':
row = [column.header,
column.analysis.min,
column.analysis.max,
column.analysis.mode,
column.analysis.mean,
column.analysis.median_low,
column.analysis.median,
column.analysis.median_high,
column.most_common[:5]]
rows += self.row_creator(row)
return rows
def string_analysis(self):
"""Return HTML string of string analysis on columns of type string
in the data object.
"""
rows = ''
for column in self.data.columns:
if column.type == 'String':
row = [column.header,
column.analysis.mode,
column.most_common[:5]]
rows += self.row_creator(row)
return rows
def enum_analysis(self):
"""Return HTML string of enumeration analysis on columns of type Enum
in the data object.
"""
rows = ''
for column in self.data.columns:
if column.type == 'Enum':
row = [column.header,
column.analysis.mode,
column.most_common[:5]]
rows += self.row_creator(row)
return rows
def bool_analysis(self):
pass
# Todo: Implement boolean analysis.