-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathranker.py
165 lines (103 loc) · 4.71 KB
/
ranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os, pickle
import numpy as np
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.preprocessing import normalize
from params import get_params
import random
import time
class Ranker():
def __init__(self,params):
# Read image lists
self.dataset= params['dataset']
self.image_path = params['database_images']
self.dimension = params['dimension']
self.pooling = params['pooling']
self.N_QE = params['N_QE']
self.stage = params['stage']
with open(params['frame_list'],'r') as f:
self.database_list = f.read().splitlines()
with open(params['query_list'],'r') as f:
self.query_names = f.read().splitlines()
# Distance type
self.dist_type = params['distance']
# Database features ---
# PCA MODEL - use paris for oxford data and vice versa
if self.dataset is 'paris':
self.pca = pickle.load(open(params['pca_model'] + '_oxford.pkl', 'rb'))
elif self.dataset is 'oxford':
self.pca = pickle.load(open(params['pca_model'] + '_paris.pkl', 'rb'))
# Load features
self.db_feats = pickle.load(open(params['database_feats'],'rb'))
print "Applying PCA"
self.db_feats = normalize(self.db_feats)
if self.pooling is 'sum':
self.db_feats = self.pca.transform(self.db_feats)
self.db_feats = normalize(self.db_feats)
# Where to store the rankings
self.rankings_dir = params['rankings_dir']
def get_distances(self):
distances = pairwise_distances(self.query_feats,self.db_feats,self.dist_type, n_jobs=-1)
return distances
def get_query_vectors(self):
self.query_feats = np.zeros((len(self.query_names),self.dimension))
i = 0
for query in self.query_names:
query_file, box = self.query_info(query)
self.query_feats[i,:] = self.db_feats[np.where(np.array(self.database_list) == query_file)]
# add top elements of the ranking to the query
if self.stage is 'QE':
with open(os.path.join(self.rankings_dir,os.path.basename(query.split('_query')[0]) +'.txt'),'r') as f:
ranking = f.read().splitlines()
for i_q in range(self.N_QE):
imfile = ranking[i_q]
# construct image path
if self.dataset is 'paris':
imname = os.path.join(self.image_path,imfile.split('_')[1],imfile + '.jpg')
elif self.dataset is 'oxford':
imname = os.path.join(self.image_path,imfile + '.jpg')
# find feature and add to query
feat = self.db_feats[np.where(np.array(self.database_list) == imname)].squeeze()
self.query_feats[i,:] += feat
# find feature and add to query
i+=1
self.query_feats = normalize(self.query_feats)
def query_info(self,filename):
'''
For oxford and paris, get query frame and box
'''
data = np.loadtxt(filename, dtype="str")
if self.dataset is 'paris':
query = data[0]
elif self.dataset is 'oxford':
query = data[0].split('oxc1_')[1]
bbx = data[1:].astype(float).astype(int)
if self.dataset is 'paris':
query = os.path.join(self.image_path,query.split('_')[1],query + '.jpg')
elif self.dataset is 'oxford':
query = os.path.join(self.image_path,query + '.jpg')
return query, bbx
def write_rankings(self,final_scores):
i = 0
for query in self.query_names:
scores = final_scores[i,:]
ranking = np.array(self.database_list)[np.argsort(scores)]
savefile = open(os.path.join(self.rankings_dir,os.path.basename(query.split('_query')[0]) +'.txt'),'w')
for res in ranking:
savefile.write(os.path.basename(res).split('.jpg')[0] + '\n')
savefile.close()
i+=1
def rank(self):
self.get_query_vectors()
print "Computing distances..."
t0 = time.time()
distances = self.get_distances()
final_scores = distances
print "Done. Time elapsed", time.time() - t0
print "Writing rankings to disk..."
t0 = time.time()
self.write_rankings(final_scores)
print "Done. Time elapsed", time.time() - t0
if __name__ == "__main__":
params = get_params()
R = Ranker(params)
R.rank()