-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathfeatures.py
119 lines (79 loc) · 3.11 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys, os
import cv2
import time
import numpy as np
from params import get_params
import pickle
from sklearn.preprocessing import normalize
from sklearn.decomposition import PCA
params = get_params()
# Add Faster R-CNN module to pythonpath
sys.path.insert(0, os.path.join(params['fast_rcnn_path'],'caffe-fast-rcnn', 'python'))
sys.path.insert(0, os.path.join(params['fast_rcnn_path'],'lib'))
import caffe
from fast_rcnn.config import cfg
import test as test_ops
def learn_transform(params,feats):
feats = normalize(feats)
pca = PCA(params['dimension'],whiten=True)
pca.fit(feats)
pickle.dump(pca,open(params['pca_model'] + '_' + params['dataset'] + '.pkl','wb'))
class Extractor():
def __init__(self,params):
self.dimension = params['dimension']
self.dataset = params['dataset']
self.pooling = params['pooling']
# Read image lists
with open(params['query_list'],'r') as f:
self.query_names = f.read().splitlines()
with open(params['frame_list'],'r') as f:
self.database_list = f.read().splitlines()
# Parameters needed
self.layer = params['layer']
self.save_db_feats = params['database_feats']
# Init network
if params['gpu']:
caffe.set_mode_gpu()
caffe.set_device(0)
else:
caffe.set_mode_cpu()
print "Extracting from:", params['net_proto']
cfg.TEST.HAS_RPN = True
self.net = caffe.Net(params['net_proto'], params['net'], caffe.TEST)
def extract_feat_image(self,image):
im = cv2.imread(image)
scores, boxes = test_ops.im_detect(self.net, im, boxes = None)
feat = self.net.blobs[self.layer].data
return feat
def pool_feats(self,feat):
if self.pooling is 'max':
feat = np.max(np.max(feat,axis=2),axis=1)
else:
feat = np.sum(np.sum(feat,axis=2),axis=1)
return feat
def save_feats_to_disk(self):
print "Extracting database features..."
t0 = time.time()
counter = 0
# Init empty np array to store all databsae features
xfeats = np.zeros((len(self.database_list),self.dimension))
for frame in self.database_list:
counter +=1
# Extract raw feature from cnn
feat = self.extract_feat_image(frame).squeeze()
# Compose single feature vector
feat = self.pool_feats(feat)
# Add to the array of features
xfeats[counter-1,:] = feat
# Display every now and then
if counter%50 == 0:
print counter, '/', len(self.database_list), time.time() - t0
# Dump to disk
pickle.dump(xfeats,open(self.save_db_feats,'wb'))
print " ============================ "
if __name__ == "__main__":
params = get_params()
E = Extractor(params)
E.save_feats_to_disk()
feats = pickle.load(open(params['database_feats'],'rb'))
learn_transform(params,feats)