forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_utils.cpp
617 lines (554 loc) · 22.5 KB
/
nn_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <algorithm>
#include <random>
using namespace torch::nn;
namespace rnn_utils = torch::nn::utils::rnn;
struct NNUtilsTest : torch::test::SeedingFixture {};
struct PackedSequenceTest : torch::test::SeedingFixture {};
TEST_F(NNUtilsTest, ClipGradNorm) {
auto l = Linear(10, 10);
float max_norm = 2;
auto compute_norm = [&](float norm_type) -> float {
float total_norm = 0.0;
if (norm_type != std::numeric_limits<float>::infinity()) {
for (const auto& p : l->parameters()) {
total_norm +=
p.grad().data().abs().pow(norm_type).sum().item().toFloat();
}
return std::pow(total_norm, 1.0 / norm_type);
} else {
for (const auto& p : l->parameters()) {
auto param_max = p.grad().data().abs().max().item().toFloat();
if (param_max > total_norm) {
total_norm = param_max;
}
}
return total_norm;
}
};
auto compare_scaling =
[&](const std::vector<torch::Tensor>& grads) -> torch::Tensor {
std::vector<torch::Tensor> p_scale;
for (int i = 0; i < grads.size(); i++) {
auto param = l->parameters()[i];
auto grad = grads[i];
p_scale.push_back(param.grad().data().div(grad).view(-1));
}
auto scale = torch::cat(p_scale);
return scale; // need to assert std is 0.
};
std::vector<torch::Tensor> grads = {
torch::arange(1.0, 101).view({10, 10}),
torch::ones({10}).div(1000),
};
std::vector<float> norm_types = {
0.5,
1.5,
2.0,
4.0,
std::numeric_limits<float>::infinity(),
};
for (auto norm_type : norm_types) {
for (int i = 0; i < grads.size(); i++) {
l->parameters()[i].grad() =
grads[i].clone().view_as(l->parameters()[i].data());
}
auto norm_before = compute_norm(norm_type);
auto norm = utils::clip_grad_norm_(l->parameters(), max_norm, norm_type);
auto norm_after = compute_norm(norm_type);
ASSERT_FLOAT_EQ(norm, norm_before);
ASSERT_FLOAT_EQ(norm_after, max_norm);
ASSERT_LE(norm_after, max_norm);
auto scaled = compare_scaling(grads);
ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7);
}
// Small gradients should be left unchanged
grads = {
torch::rand({10, 10}).div(10000),
torch::ones(10).div(500),
};
for (auto norm_type : norm_types) {
for (int i = 0; i < grads.size(); i++) {
l->parameters()[i].grad().data().copy_(grads[i]);
}
auto norm_before = compute_norm(norm_type);
auto norm = utils::clip_grad_norm_(l->parameters(), max_norm, norm_type);
auto norm_after = compute_norm(norm_type);
ASSERT_FLOAT_EQ(norm, norm_before);
ASSERT_FLOAT_EQ(norm_before, norm_after);
ASSERT_LE(norm_after, max_norm);
auto scaled = compare_scaling(grads);
ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7);
ASSERT_EQ(scaled[0].item().toFloat(), 1);
}
// should accept a single tensor as input
auto p1 = torch::randn({10, 10});
auto p2 = torch::randn({10, 10});
auto g = torch::arange(1., 101).view({10, 10});
p1.grad() = g.clone();
p2.grad() = g.clone();
for (const auto norm_type : norm_types) {
utils::clip_grad_norm_(p1, max_norm, norm_type);
utils::clip_grad_norm_({p2}, max_norm, norm_type);
ASSERT_TRUE(torch::allclose(p1.grad(), p2.grad()));
}
}
TEST_F(NNUtilsTest, ClipGradValue) {
auto l = Linear(10, 10);
float clip_value = 2.5;
torch::Tensor grad_w = torch::arange(-50., 50).view({10, 10}).div_(5);
torch::Tensor grad_b = torch::ones({10}).mul_(2);
std::vector<std::vector<torch::Tensor>> grad_lists = {
{grad_w, grad_b}, {grad_w, torch::Tensor()}};
for (auto grad_list : grad_lists) {
for (int i = 0; i < grad_list.size(); i++) {
auto p = l->parameters()[i];
auto g = grad_list[i];
p.grad() = g.defined() ? g.clone().view_as(p.data()) : g;
}
utils::clip_grad_value_(l->parameters(), clip_value);
for (const auto& p : l->parameters()) {
if (p.grad().defined()) {
ASSERT_LE(
p.grad().data().max().item().toFloat(), clip_value);
ASSERT_GE(
p.grad().data().min().item().toFloat(), -clip_value);
}
}
}
// Should accept a single Tensor as input
auto p1 = torch::randn({10, 10});
auto p2 = torch::randn({10, 10});
auto g = torch::arange(-50., 50).view({10, 10}).div_(5);
p1.grad() = g.clone();
p2.grad() = g.clone();
utils::clip_grad_value_(p1, clip_value);
utils::clip_grad_value_({p2}, clip_value);
ASSERT_TRUE(torch::allclose(p1.grad(), p2.grad()));
}
TEST_F(NNUtilsTest, ConvertParameters) {
std::vector<torch::Tensor> parameters{
torch::arange(9, torch::kFloat32),
torch::arange(9, torch::kFloat32).view({3, 3}),
torch::arange(8, torch::kFloat32).view({2, 2, 2})
};
auto expected = torch::cat({
torch::arange(9, torch::kFloat32),
torch::arange(9, torch::kFloat32).view(-1),
torch::arange(8, torch::kFloat32).view(-1)
});
auto vector = utils::parameters_to_vector(parameters);
ASSERT_TRUE(vector.allclose(expected));
std::vector<torch::Tensor> zero_parameters{
torch::zeros({9}, torch::kFloat32),
torch::zeros({9}, torch::kFloat32).view({3, 3}),
torch::zeros({8}, torch::kFloat32).view({2, 2, 2})
};
utils::vector_to_parameters(vector, zero_parameters);
for (int i = 0; i < zero_parameters.size(); ++i) {
ASSERT_TRUE(zero_parameters[i].allclose(parameters[i]));
}
{
auto conv1 = Conv2d(3, 10, 5);
auto fc1 = Linear(10, 20);
auto model = Sequential(conv1, fc1);
auto vec = utils::parameters_to_vector(model->parameters());
ASSERT_EQ(vec.size(0), 980);
}
{
auto conv1 = Conv2d(3, 10, 5);
auto fc1 = Linear(10, 20);
auto model = Sequential(conv1, fc1);
auto vec = torch::arange(0., 980);
utils::vector_to_parameters(vec, model->parameters());
auto sample = model->parameters()[0][0][0][0];
ASSERT_TRUE(torch::equal(sample.data(), vec.data().slice(0, 0, 5)));
}
}
int64_t PackedSequenceTest_batch_size = 5;
int64_t PackedSequenceTest_max_length = 6;
std::vector<torch::Tensor> PackedSequenceTest_ordered_sequence(torch::ScalarType tensor_type) {
std::vector<torch::Tensor> seqs;
seqs.reserve(PackedSequenceTest_batch_size);
for (int64_t i = 0; i < PackedSequenceTest_batch_size; i++) {
seqs.emplace_back(torch::empty({
torch::randint(1, PackedSequenceTest_max_length, {1}).item<int64_t>()
}, tensor_type));
}
for (auto& s : seqs) {
s.random_(-128, 128);
}
sort(
seqs.begin(),
seqs.end(),
[&](const torch::Tensor& t1, const torch::Tensor& t2) {
return t1.size(0) > t2.size(0);
}
);
return seqs;
}
std::tuple<torch::Tensor, torch::Tensor> PackedSequenceTest_padded_sequence(torch::ScalarType tensor_type) {
// Create Tensor of random padded sequences
auto ordered = PackedSequenceTest_ordered_sequence(tensor_type);
auto lengths = torch::empty({(int64_t)ordered.size()}, torch::kInt64);
for (int64_t i = 0; i < ordered.size(); i++) {
lengths[i] = ordered[i].size(0);
}
auto padded_tensor = rnn_utils::pad_sequence(ordered);
return std::make_tuple(padded_tensor, lengths);
}
void assert_is_equal_packed_sequence(const rnn_utils::PackedSequence& a, const rnn_utils::PackedSequence& b) {
ASSERT_TRUE(torch::allclose(a.data(), b.data()));
ASSERT_TRUE(torch::allclose(a.batch_sizes(), b.batch_sizes()));
ASSERT_TRUE(
(!a.sorted_indices().defined() && !b.sorted_indices().defined()) ||
torch::allclose(a.sorted_indices(), b.sorted_indices()));
ASSERT_TRUE(
(!a.unsorted_indices().defined() && !b.unsorted_indices().defined()) ||
torch::allclose(a.unsorted_indices(), b.unsorted_indices()));
}
void assert_is_same_packed_sequence(const rnn_utils::PackedSequence& a, const rnn_utils::PackedSequence& b) {
ASSERT_TRUE(a.data().is_same(b.data()));
ASSERT_TRUE(a.batch_sizes().is_same(b.batch_sizes()));
ASSERT_TRUE(a.sorted_indices().is_same(b.sorted_indices()));
ASSERT_TRUE(a.unsorted_indices().is_same(b.unsorted_indices()));
}
TEST_F(PackedSequenceTest, WrongOrder) {
auto a = torch::ones({25, 300});
auto b = torch::ones({22, 300});
auto b_a = rnn_utils::pad_sequence({b, a});
ASSERT_THROW(
rnn_utils::pack_padded_sequence(
b_a, torch::tensor({22, 25}), /*batch_first=*/false, /*enforce_sorted=*/true),
c10::Error);
}
TEST_F(PackedSequenceTest, TotalLength) {
torch::Tensor padded, lengths;
std::tie(padded, lengths) = PackedSequenceTest_padded_sequence(torch::kFloat);
int64_t max_length = torch::max(lengths).item<int64_t>();
rnn_utils::PackedSequence packed = rnn_utils::pack_padded_sequence(padded, lengths);
// test ValueError if total_length < max_length
for (int64_t total_length : std::vector<int64_t>{-1, 0, max_length - 1}) {
for (bool batch_first : std::vector<bool>{true, false}) {
auto err_fn = [&]() {
rnn_utils::pad_packed_sequence(
packed,
/*batch_first=*/batch_first,
/*padding_value=*/0.0,
/*total_length=*/total_length);
};
ASSERT_THROWS_WITH(err_fn(),
"Expected total_length to be at least the length of the longest sequence in input");
}
}
// test that pad_packed_sequence returns results of correct length
for (bool batch_first : std::vector<bool>{true, false}) {
torch::Tensor no_extra_pad, ignored;
std::tie(no_extra_pad, ignored) = rnn_utils::pad_packed_sequence(
packed, /*batch_first=*/batch_first);
for (int64_t total_length_delta : std::vector<int64_t>{0, 1, 8}) {
int64_t total_length = max_length + total_length_delta;
torch::Tensor unpacked, lengths_out;
std::tie(unpacked, lengths_out) = rnn_utils::pad_packed_sequence(
packed, /*batch_first=*/batch_first, /*padding_value=*/0.0, /*total_length=*/total_length);
ASSERT_TRUE(torch::allclose(lengths, lengths_out));
ASSERT_EQ(unpacked.size(batch_first ? 1 : 0), total_length);
torch::Tensor ref_output, extra_pad;
if (total_length_delta == 0) {
ref_output = no_extra_pad;
} else if (batch_first) {
extra_pad = torch::zeros({PackedSequenceTest_batch_size, total_length_delta}, no_extra_pad.options());
ref_output = torch::cat({no_extra_pad, extra_pad}, 1);
} else {
extra_pad = torch::zeros({total_length_delta, PackedSequenceTest_batch_size}, no_extra_pad.options());
ref_output = torch::cat({no_extra_pad, extra_pad}, 0);
}
ASSERT_TRUE(torch::allclose(unpacked, ref_output));
}
}
}
TEST_F(PackedSequenceTest, To) {
for (bool enforce_sorted : std::vector<bool>{true, false}) {
torch::Tensor padded, lengths;
std::tie(padded, lengths) = PackedSequenceTest_padded_sequence(torch::kInt);
rnn_utils::PackedSequence a = rnn_utils::pack_padded_sequence(
padded, lengths, /*batch_first=*/false, /*enforce_sorted=*/enforce_sorted).cpu();
assert_is_same_packed_sequence(a, a.to(torch::kCPU));
assert_is_same_packed_sequence(a, a.cpu());
assert_is_same_packed_sequence(a, a.to(torch::device(torch::kCPU).dtype(torch::kInt32)));
if (torch::cuda::is_available()) {
auto b = a.cuda();
assert_is_same_packed_sequence(b, b.to(torch::kCUDA));
assert_is_same_packed_sequence(b, b.cuda());
assert_is_equal_packed_sequence(a, b.to(torch::kCPU));
assert_is_equal_packed_sequence(b, a.to(torch::kCUDA));
assert_is_equal_packed_sequence(a, b.to(torch::device(torch::kCPU).dtype(torch::kInt32)));
assert_is_same_packed_sequence(b, b.to(torch::kInt32));
}
}
}
TEST_F(NNUtilsTest, PackSequence) {
auto _compatibility_test = [&](
torch::ArrayRef<torch::Tensor> sequences,
torch::Tensor lengths,
bool batch_first,
bool enforce_sorted = false) {
torch::Tensor padded = rnn_utils::pad_sequence(sequences, batch_first);
rnn_utils::PackedSequence packed = rnn_utils::pack_sequence(sequences, enforce_sorted);
std::tuple<torch::Tensor, torch::Tensor> unpacked = rnn_utils::pad_packed_sequence(packed, batch_first);
ASSERT_TRUE(torch::allclose(padded, std::get<0>(unpacked)));
rnn_utils::PackedSequence pack_padded = rnn_utils::pack_padded_sequence(
padded, lengths, batch_first, enforce_sorted);
assert_is_equal_packed_sequence(packed, pack_padded);
};
// single dimensional
auto a = torch::tensor({1, 2, 3});
auto b = torch::tensor({4, 5});
auto c = torch::tensor({6});
rnn_utils::PackedSequence packed = rnn_utils::pack_sequence({a, b, c}, /*enforce_sorted=*/false);
auto expected = torch::tensor({1, 4, 6, 2, 5, 3});
ASSERT_TRUE(torch::allclose(packed.batch_sizes(), torch::tensor({3, 2, 1})));
ASSERT_TRUE(torch::allclose(packed.data(), expected));
ASSERT_TRUE(torch::allclose(packed.sorted_indices(), torch::tensor({0, 1, 2})));
ASSERT_TRUE(torch::allclose(packed.unsorted_indices(), torch::tensor({0, 1, 2})));
rnn_utils::PackedSequence packed_unsorted = rnn_utils::pack_sequence({b, c, a}, /*enforce_sorted=*/false);
ASSERT_TRUE(torch::allclose(packed_unsorted.batch_sizes(), torch::tensor({3, 2, 1})));
ASSERT_TRUE(torch::allclose(packed_unsorted.data(), expected));
ASSERT_TRUE(torch::allclose(packed_unsorted.sorted_indices(), torch::tensor({2, 0, 1})));
ASSERT_TRUE(torch::allclose(packed_unsorted.unsorted_indices(), torch::tensor({1, 2, 0})));
// single dimensional, enforce_sorted = True
rnn_utils::PackedSequence packed_enforce_sorted = rnn_utils::pack_sequence({a, b, c}, /*enforce_sorted=*/true);
ASSERT_TRUE(torch::allclose(packed_enforce_sorted.batch_sizes(), torch::tensor({3, 2, 1})));
ASSERT_TRUE(torch::allclose(packed_enforce_sorted.data(), expected));
ASSERT_FALSE(packed_enforce_sorted.sorted_indices().defined());
ASSERT_FALSE(packed_enforce_sorted.unsorted_indices().defined());
ASSERT_THROWS_WITH(
rnn_utils::pack_sequence({b, c, a}, /*enforce_sorted=*/true),
"must be sorted in decreasing order");
ASSERT_THROWS_WITH(
rnn_utils::pack_sequence({b, c, a}, /*enforce_sorted=*/true),
"You can pass `enforce_sorted=False`");
// more dimensions
int64_t maxlen = 9;
for (int64_t num_dim : std::vector<int64_t>{0, 1, 2, 3}) {
std::vector<torch::Tensor> sequences;
std::vector<int64_t> lengths_vec;
std::vector<int64_t> trailing_dims(num_dim, 4);
for (int64_t i = maxlen; i > 0; i--) {
int64_t seq_len = i * i;
lengths_vec.emplace_back(seq_len);
std::vector<int64_t> tensor_sizes{seq_len, 5};
tensor_sizes.insert(
tensor_sizes.end(),
trailing_dims.begin(),
trailing_dims.end());
sequences.emplace_back(torch::rand(tensor_sizes));
}
std::vector<torch::Tensor> unsorted_sequences;
for (const auto& s : sequences) {
unsorted_sequences.emplace_back(s.clone());
}
std::shuffle(
std::begin(unsorted_sequences),
std::end(unsorted_sequences),
std::default_random_engine{});
std::vector<int64_t> unsorted_sequences_lengths_vec;
for (const auto& t : unsorted_sequences) {
unsorted_sequences_lengths_vec.emplace_back(t.size(0));
}
// compatibility with other utilities
for (bool batch_first : std::vector<bool>{true, false}) {
for (bool enforce_sorted : std::vector<bool>{true, false}) {
_compatibility_test(
sequences, torch::tensor(lengths_vec), batch_first, enforce_sorted);
}
_compatibility_test(
unsorted_sequences, torch::tensor(unsorted_sequences_lengths_vec), batch_first);
}
}
}
TEST_F(NNUtilsTest, PackPaddedSequence) {
auto generate_test_case = [&](
torch::ArrayRef<int64_t> sorted_lengths,
bool should_shuffle) {
auto pad = [&](torch::Tensor tensor, int64_t length) {
std::vector<int64_t> tensor_sizes{length - tensor.size(0)};
tensor_sizes.insert(
tensor_sizes.end(),
tensor.sizes().slice(1).begin(),
tensor.sizes().slice(1).end());
return torch::cat({tensor, torch::zeros(tensor_sizes, tensor.options())});
};
int64_t max_length = sorted_lengths[0];
torch::Tensor batch_sizes = torch::empty({max_length}, torch::kInt64);
for (int64_t i = 1; i < max_length + 1; i++) {
int64_t total = 0;
for (const auto& x : sorted_lengths) {
if (x >= i) {
total++;
}
}
batch_sizes[i-1] = total;
}
int64_t offset = 0;
std::vector<torch::Tensor> tensors_to_be_cat;
for (int64_t i = 1; i < sorted_lengths.size() + 1; i++) {
int64_t l = sorted_lengths.at(i-1);
tensors_to_be_cat.emplace_back(pad(i * 100 + torch::arange(1., 5 * l + 1).view({l, 1, 5}), max_length));
}
auto padded = torch::cat(tensors_to_be_cat, 1);
std::vector<torch::Tensor> expected_data_vec;
for (int64_t n = 0; n < batch_sizes.size(0); n++) {
int64_t batch_size = batch_sizes[n].item<int64_t>();
for (int64_t i = 0; i < batch_size; i++) {
expected_data_vec.emplace_back(torch::arange(1., 6) + (i + 1) * 100 + 5 * n);
}
}
auto expected_data = torch::stack(expected_data_vec, /*dim=*/0);
torch::Tensor unsorted_indices, lengths;
if (should_shuffle) {
// Shuffle the padded sequence to create an unsorted sequence
std::vector<int64_t> permutation;
for (int64_t i = 0; i < sorted_lengths.size(); i++) {
permutation.emplace_back(i);
}
std::shuffle(
std::begin(permutation),
std::end(permutation),
std::default_random_engine{});
unsorted_indices = torch::tensor(permutation);
padded = padded.index_select(1, unsorted_indices);
lengths = torch::tensor(sorted_lengths).index_select(0, unsorted_indices);
} else {
unsorted_indices = torch::Tensor();
lengths = torch::tensor(sorted_lengths);
}
return std::make_tuple(
padded.requires_grad_(), lengths, expected_data, batch_sizes, unsorted_indices);
};
std::vector<std::pair<std::vector<int64_t>, bool>> test_cases = {
// sorted_lengths, should_shuffle
{{10, 8, 4, 2, 2, 2, 1}, false},
{{11, 10, 8, 6, 4, 3, 1}, false},
{{11, 10, 8, 6, 4, 3, 1}, true}
};
for (const auto& test_case : test_cases) {
for (bool batch_first : std::vector<bool>{true, false}) {
std::vector<int64_t> sorted_lengths = std::get<0>(test_case);
bool should_shuffle = std::get<1>(test_case);
torch::Tensor padded, lengths, expected_data, batch_sizes, unsorted_indices;
std::tie(padded, lengths, expected_data, batch_sizes, unsorted_indices) = generate_test_case(
sorted_lengths, should_shuffle);
auto src = padded;
if (batch_first) {
src = src.transpose(0, 1);
}
// check output
rnn_utils::PackedSequence packed = rnn_utils::pack_padded_sequence(
src, lengths, /*batch_first=*/batch_first, /*enforce_sorted=*/!should_shuffle);
ASSERT_TRUE(torch::allclose(packed.data(), expected_data));
ASSERT_TRUE(torch::allclose(packed.batch_sizes(), batch_sizes));
ASSERT_TRUE(
(!packed.unsorted_indices().defined() && !unsorted_indices.defined()) ||
torch::allclose(packed.unsorted_indices(), unsorted_indices));
// test inverse
torch::Tensor unpacked, unpacked_len;
std::tie(unpacked, unpacked_len) = rnn_utils::pad_packed_sequence(packed, /*batch_first=*/batch_first);
ASSERT_TRUE(torch::allclose(unpacked, src));
ASSERT_TRUE(torch::allclose(unpacked_len, lengths));
// check grad
if (padded.grad().defined()) {
torch::NoGradGuard no_grad;
padded.grad().zero_();
}
torch::Tensor grad_output;
{
torch::NoGradGuard no_grad;
grad_output = unpacked.clone().normal_();
}
unpacked.backward(grad_output);
if (batch_first) {
grad_output.transpose_(0, 1);
}
for (int64_t i = 0; i < lengths.size(0); i++) {
int64_t l = lengths[i].item<int64_t>();
ASSERT_TRUE(torch::allclose(
padded.grad().narrow(0, 0, l).select(1, i),
grad_output.narrow(0, 0, l).select(1, i)));
if (l < 10) {
ASSERT_EQ(
padded.grad().narrow(0, l, padded.grad().size(0) - l).select(1, i).abs().sum().item<double>(),
0);
}
}
}
}
// test error messages
ASSERT_THROWS_WITH(rnn_utils::pack_padded_sequence(torch::randn({3, 3}), torch::tensor({1, 3, 2})),
"You can pass `enforce_sorted=False`");
ASSERT_THROWS_WITH(rnn_utils::pack_padded_sequence(torch::randn({0, 0}), torch::tensor({})),
"empty tensor");
}
TEST_F(NNUtilsTest, PadSequence) {
auto pad = [&](const torch::Tensor& tensor, int64_t length) {
torch::NoGradGuard no_grad;
std::vector<int64_t> tensor_sizes{length - tensor.size(0)};
tensor_sizes.insert(
tensor_sizes.end(),
tensor.sizes().slice(1).begin(),
tensor.sizes().slice(1).end());
return torch::cat({tensor, torch::zeros(tensor_sizes, tensor.options())});
};
// single dimensional
auto a = torch::tensor({1, 2, 3});
auto b = torch::tensor({4, 5});
auto c = torch::tensor({6});
torch::Tensor expected, padded;
// batch_first = true
expected = torch::tensor({{4, 5, 0}, {1, 2, 3}, {6, 0, 0}});
padded = rnn_utils::pad_sequence({b, a, c}, true);
ASSERT_TRUE(padded.allclose(expected));
// batch_first = false
padded = rnn_utils::pad_sequence({b, a, c});
ASSERT_TRUE(padded.allclose(expected.transpose(0, 1)));
// pad with non-zero value
expected = torch::tensor({{4, 5, 1}, {1, 2, 3}, {6, 1, 1}});
padded = rnn_utils::pad_sequence({b, a, c}, true, 1);
ASSERT_TRUE(padded.allclose(expected));
// Test pad sorted sequence
expected = torch::tensor({{1, 2, 3}, {4, 5, 0}, {6, 0, 0}});
padded = rnn_utils::pad_sequence({a, b, c}, true);
ASSERT_TRUE(padded.allclose(expected));
// more dimensions
int64_t maxlen = 9;
for (int64_t num_dim : std::vector<int64_t>{0, 1, 2, 3}) {
std::vector<torch::Tensor> sequences;
std::vector<int64_t> trailing_dims(num_dim, 4);
for (int64_t i = 1; i < maxlen + 1; i++) {
int64_t seq_len = i * i;
std::vector<int64_t> tensor_sizes{seq_len, 5};
tensor_sizes.insert(
tensor_sizes.end(),
trailing_dims.begin(),
trailing_dims.end());
sequences.emplace_back(torch::rand(tensor_sizes));
}
std::shuffle(
std::begin(sequences),
std::end(sequences),
std::default_random_engine{});
std::vector<torch::Tensor> expected_tensors;
for (const torch::Tensor& seq : sequences) {
expected_tensors.emplace_back(pad(seq, maxlen * maxlen));
}
// batch first = true
auto expected = torch::stack(expected_tensors);
auto padded = rnn_utils::pad_sequence(sequences, true);
ASSERT_TRUE(padded.allclose(expected));
// batch first = false
padded = rnn_utils::pad_sequence(sequences);
ASSERT_TRUE(padded.allclose(expected.transpose(0, 1)));
}
}