forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCHalfAutoNumerics.cuh
46 lines (33 loc) · 1.19 KB
/
THCHalfAutoNumerics.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#ifndef THC_HALF_AUTO_NUMERICS_INC
#define THC_HALF_AUTO_NUMERICS_INC
#include <TH/THHalf.h>
#include <THC/THCNumerics.cuh>
// WARNING: THCNumerics is being deprecated. Read the comments and function usage
// in THCNumerics to learn about the deprecation
//
// Half numerics functions defined as free functions, so cunn code can be
// written generically, i.e. without excessive calling of THCNumerics<THHalf> functions.
// these functions should move to THCNumerics
inline __host__ __device__ THHalf fmaxType(THHalf x, THHalf y) {
return THCNumerics<THHalf>::ge(x, y) ? x : y;
}
inline __host__ __device__ float fmaxType(float x, THHalf y) {
return fmaxf(x, ScalarConvert<THHalf, float>::to(y));
}
inline __host__ __device__ float fmaxType(float x, float y) {
return fmaxf(x, y);
}
inline __host__ __device__ double fmaxType(double x, double y) {
return fmax(x, y);
}
// arithmetic functions
inline __host__ __device__ THHalf exp(THHalf a) {
return THCNumerics<THHalf>::exp(a);
}
inline __host__ __device__ THHalf pow(THHalf a, THHalf b) {
return THCNumerics<THHalf>::pow(a, b);
}
inline __host__ __device__ THHalf tanh(THHalf a) {
return THCNumerics<THHalf>::tanh(a);
}
#endif