forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassNLLCriterion.cu
197 lines (177 loc) · 6.55 KB
/
ClassNLLCriterion.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include <limits>
#include <THCUNN/THCUNN.h>
#include <THCUNN/common.h>
#include <TH/THHalf.h>
#include <THC/THCNumerics.cuh>
#include <THC/THCDeviceTensor.cuh>
#include <THC/THCDeviceTensorUtils.cuh>
#include <THC/THCDeviceUtils.cuh>
#include <ATen/cuda/detail/KernelUtils.h>
#include <c10/macros/Macros.h>
#include <stdio.h>
static const int NTHREADS = 32;
template <typename Dtype>
__global__ void cunn_ClassNLLCriterion_updateOutput_kernel1(Dtype *output,
Dtype *total_weight,
Dtype *input,
THCIndex_t *target,
Dtype *weights,
int size_average,
int n_classes,
int64_t ignore_index) {
CUDA_KERNEL_ASSERT(threadIdx.x == 0 && threadIdx.y == 0 && threadIdx.z == 0);
// TODO: T4951791 Reuse code between updateOutput_kernel1 and
// updateOutput_kernel.
int t = (int) *target;
if (t != (int) ignore_index) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
Dtype cur_weight = weights ? weights[t] : ScalarConvert<int, Dtype>::to(1);
*output = -cur_weight * input[t];
*total_weight = cur_weight;
if (size_average && *total_weight > 0) {
*output /= *total_weight;
}
}
}
template <typename Dtype>
__global__ void ClassNLLCriterion_updateOutput_no_reduce_kernel(
int batch_size,
THCDeviceTensor<Dtype, 2> input,
THCDeviceTensor<THCIndex_t, 1> target,
THCDeviceTensor<Dtype, 1> output,
Dtype *weights,
int n_classes,
int ignore_index) {
CUDA_KERNEL_LOOP(index, batch_size) {
int cur_target = target[index];
if (cur_target == ignore_index) {
output[index] = ScalarConvert<int, Dtype>::to(0);
continue;
}
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
Dtype weight =
weights ? weights[cur_target] : ScalarConvert<int, Dtype>::to(1);
output[index] = -weight * input[index][cur_target];
}
}
template <typename Dtype>
__global__ void ClassNLLCriterion_updateGradInput_no_reduce_kernel(
int batch_size,
THCDeviceTensor<THCIndex_t, 1> target,
THCDeviceTensor<Dtype, 1> gradOutput,
THCDeviceTensor<Dtype, 2> gradInput,
Dtype *weights,
int n_classes,
int ignore_index) {
CUDA_KERNEL_LOOP(index, batch_size) {
int cur_target = target[index];
if (cur_target == ignore_index) {
continue;
}
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
Dtype weight =
weights ? weights[cur_target] : ScalarConvert<int, Dtype>::to(1);
gradInput[index][cur_target] = -weight * gradOutput[index];
}
}
template <typename Dtype, typename Acctype>
__global__ void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *output,
Dtype *total_weight,
Dtype *input,
THCIndex_t *target,
Dtype *weights,
int size_average,
int nframe,
int ndim,
int n_classes,
int64_t ignore_index) {
__shared__ Acctype shInputs[NTHREADS], acc_weight[NTHREADS];
int i, t;
Dtype cur_weight;
shInputs[threadIdx.x] = ScalarConvert<int, Acctype>::to(0);
acc_weight[threadIdx.x] = ScalarConvert<int, Acctype>::to(0);
for (i = threadIdx.x; i < nframe; i += NTHREADS) {
t = target[i];
if (t != (int) ignore_index) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
cur_weight = weights ? weights[t] : ScalarConvert<int, Dtype>::to(1);
shInputs[threadIdx.x] -= input[i * ndim + t] * cur_weight;
acc_weight[threadIdx.x] += cur_weight;
}
}
__syncthreads();
// TODO: T4951791 Reuse code between updateOutput_kernel1 and
// updateOutput_kernel
if (threadIdx.x == 0) {
*output = *total_weight = ScalarConvert<int, Dtype>::to(0);
Acctype outputAcc = 0;
Acctype total_weightAcc = 0;
for (i = 0; i < NTHREADS; ++i){
// FIXME should we do somethigng here
outputAcc += shInputs[i];
total_weightAcc += acc_weight[i];
}
*total_weight = ScalarConvert<Acctype, Dtype>::to(total_weightAcc);
*output = ScalarConvert<Acctype, Dtype>::to(outputAcc);
if (size_average) {
if (nframe == 0) {
// Mean reduction on empty tensors produces NaN
*output = std::numeric_limits<double>::quiet_NaN();
}
if (*total_weight != 0) {
*output = ScalarConvert<Acctype, Dtype>::to(outputAcc / total_weightAcc);
}
}
}
}
template <typename Dtype>
__global__ void cunn_ClassNLLCriterion_updateGradInput_kernel1(
Dtype* gradInput,
Dtype* gradOutput,
Dtype* weights,
THCIndex_t* target,
Dtype* total_weight,
int size_average,
int n_classes,
int64_t ignore_index)
{
if (*total_weight <= 0) {
return;
}
Dtype norm = size_average ? (ScalarConvert<int, Dtype>::to(1) / *total_weight) : ScalarConvert<int, Dtype>::to(1);
int t = (int)*target;
if (t != (int) ignore_index) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
gradInput[t] = -(weights ? weights[t] : ScalarConvert<int, Dtype>::to(1)) * norm * gradOutput[0];
}
}
template <typename Dtype>
__global__ void cunn_ClassNLLCriterion_updateGradInput_kernel(
Dtype *gradInput,
Dtype *gradOutput,
THCIndex_t *target,
Dtype *weights,
Dtype *total_weight,
int size_average,
int nframe,
int ndim,
int n_classes,
int64_t ignore_index)
{
if (*total_weight <= 0) {
return;
}
int i, t;
Dtype norm = size_average ? (ScalarConvert<int, Dtype>::to(1) / *total_weight) : ScalarConvert<int, Dtype>::to(1);
for (i = threadIdx.x; i < nframe; i += NTHREADS) {
t = (int)target[i];
if (t != (int) ignore_index) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
gradInput[i * ndim + t] = -(weights ? weights[t] : ScalarConvert<int, Dtype>::to(1)) * norm * gradOutput[0];
}
}
}
#include <THCUNN/generic/ClassNLLCriterion.cu>
#include <THC/THCGenerateFloatTypes.h>
#include <THCUNN/generic/ClassNLLCriterion.cu>
#include <THC/THCGenerateBFloat16Type.h>