-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathAdditive_LSTM_Demo.py
303 lines (273 loc) · 13.3 KB
/
Additive_LSTM_Demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# ==============================================================================
# MIT License
# #
# Copyright 2022 Institute for Automotive Engineering of RWTH Aachen University.
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# #
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# #
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
import tensorflow as tf
from keras.models import Model
from keras.layers import Layer, Lambda
from keras.layers import Conv2D
from keras.layers import Add, Subtract
class RnnConv(Layer):
"""Convolutional LSTM cell
See detail in formula (4-6) in paper
"Full Resolution Image Compression with Recurrent Neural Networks"
https://arxiv.org/pdf/1608.05148.pdf
Args:
name: name of current ConvLSTM layer
filters: number of filters for each convolutional operation
strides: strides size
kernel_size: kernel size of convolutional operation
hidden_kernel_size: kernel size of convolutional operation for hidden state
Input:
inputs: input of the layer
hidden: hidden state and cell state of the layer
Output:
newhidden: updated hidden state of the layer
newcell: updated cell state of the layer
"""
def __init__(self, name, filters, strides, kernel_size, hidden_kernel_size):
super(RnnConv, self).__init__()
self.filters = filters
self.strides = strides
self.conv_i = Conv2D(filters=4 * self.filters,
kernel_size=kernel_size,
strides=self.strides,
padding='same',
use_bias=False,
name=name + '_i')
self.conv_h = Conv2D(filters=4 * self.filters,
kernel_size=hidden_kernel_size,
padding='same',
use_bias=False,
name=name + '_h')
def call(self, inputs, hidden):
# with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
conv_inputs = self.conv_i(inputs)
conv_hidden = self.conv_h(hidden[0])
# all gates are determined by input and hidden layer
in_gate, f_gate, out_gate, c_gate = tf.split(
conv_inputs + conv_hidden, 4, axis=-1) # each gate get the same number of filters
in_gate = tf.nn.sigmoid(in_gate) # input/update gate
f_gate = tf.nn.sigmoid(f_gate)
out_gate = tf.nn.sigmoid(out_gate)
c_gate = tf.nn.tanh(c_gate) # candidate cell, calculated from input
# forget_gate*old_cell+input_gate(update)*candidate_cell
newcell = tf.multiply(f_gate, hidden[1]) + tf.multiply(in_gate, c_gate)
newhidden = tf.multiply(out_gate, tf.nn.tanh(newcell))
return newhidden, newcell
class EncoderRNN(Layer):
"""
Encoder layer for one iteration.
Args:
bottleneck: bottleneck size of the layer
Input:
input: output array from last iteration.
In the first iteration, it is the normalized image patch
hidden2, hidden3, hidden4: hidden and cell states of corresponding ConvLSTM layers
training: boolean, whether the call is in inference mode or training mode
Output:
encoded: encoded binary array in each iteration
hidden2, hidden3, hidden4: hidden and cell states of corresponding ConvLSTM layers
"""
def __init__(self, bottleneck, name=None):
super(EncoderRNN, self).__init__(name=name)
self.bottleneck = bottleneck
self.Conv_e1 = Conv2D(32, kernel_size=(3, 3), strides=(2, 2), padding="same", use_bias=False, name='Conv_e1')
self.RnnConv_e1 = RnnConv("RnnConv_e1", 64, (2, 2), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_e2 = RnnConv("RnnConv_e2", 64, (2, 2), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_e3 = RnnConv("RnnConv_e3", 128, (2, 2), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.Conv_b = Conv2D(self.bottleneck, kernel_size=(1, 1), activation=tf.nn.tanh, use_bias=False, name='b_conv')
self.Sign = Lambda(lambda x: tf.sign(x), name="sign")
def call(self, input, hidden2, hidden3, hidden4, training=False):
# with tf.compat.v1.variable_scope("encoder", reuse=True):
# input size (32,32,1)
x = self.Conv_e1(input)
# x = self.GDN(x)
# (16,16,64)
hidden2 = self.RnnConv_e1(x, hidden2)
x = hidden2[0]
# (8,8,256)
hidden3 = self.RnnConv_e2(x, hidden3)
x = hidden3[0]
# (4,4,512)
hidden4 = self.RnnConv_e3(x, hidden4)
x = hidden4[0]
# (2,2,512)
# binarizer
x = self.Conv_b(x)
# (2,2,bottleneck)
# Using randomized quantization during training.
if training:
probs = (1 + x) / 2
dist = tf.compat.v1.distributions.Bernoulli(probs=probs, dtype=input.dtype)
noise = 2 * dist.sample(name='noise') - 1 - x
encoded = x + tf.stop_gradient(noise)
else:
encoded = self.Sign(x)
return encoded, hidden2, hidden3, hidden4
class DecoderRNN(Layer):
"""
Decoder layer for one iteration.
Input:
input: decoded array in each iteration
hidden2, hidden3, hidden4, hidden5: hidden and cell states of corresponding ConvLSTM layers
training: boolean, whether the call is in inference mode or training mode
Output:
decoded: decoded array in each iteration
hidden2, hidden3, hidden4, hidden5: hidden and cell states of corresponding ConvLSTM layers
"""
def __init__(self, name=None):
super(DecoderRNN, self).__init__(name=name)
self.Conv_d1 = Conv2D(128, kernel_size=(1, 1), use_bias=False, name='d_conv1')
self.RnnConv_d2 = RnnConv("RnnConv_d2", 128, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_d3 = RnnConv("RnnConv_d3", 128, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_d4 = RnnConv("RnnConv_d4", 64, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_d5 = RnnConv("RnnConv_d5", 64, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.Conv_d6 = Conv2D(filters=1, kernel_size=(1, 1), padding='same', use_bias=False, name='d_conv6',
activation=tf.nn.tanh)
self.DTS1 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_1")
self.DTS2 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_2")
self.DTS3 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_3")
self.DTS4 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_4")
self.Add = Add(name="add")
self.Out = Lambda(lambda x: x*0.5, name="out")
def call(self, input, hidden2, hidden3, hidden4, hidden5, training=False):
# (2,2,bottleneck)
x_conv = self.Conv_d1(input)
# (2,2,512)
hidden2 = self.RnnConv_d2(x_conv, hidden2)
x = hidden2[0]
# (2,2,512)
x = self.Add([x, x_conv])
x = self.DTS1(x)
# (4,4,128)
hidden3 = self.RnnConv_d3(x, hidden3)
x = hidden3[0]
# (4,4,512)
x = self.DTS2(x)
# (8,8,128)
hidden4 = self.RnnConv_d4(x, hidden4)
x = hidden4[0]
# (8,8,256)
x = self.DTS3(x)
# (16,16,64)
hidden5 = self.RnnConv_d5(x, hidden5)
x = hidden5[0]
# (16,16,128)
x = self.DTS4(x)
# (32,32,32)
# output in range (-0.5,0.5)
x = self.Conv_d6(x)
decoded = self.Out(x)
return decoded, hidden2, hidden3, hidden4, hidden5
class LidarCompressionNetwork(Model):
"""
The model to compress range image projected from point clouds captured by Velodyne LiDAR sensor
The encoder and decoder layers are iteratively called for num_iters iterations.
Details see paper Full Resolution Image Compression with Recurrent Neural Networks
https://arxiv.org/pdf/1608.05148.pdf. This architecture uses additive reconstruction framework and ConvLSTM layers.
"""
def __init__(self, bottleneck, num_iters, batch_size, input_size):
super(LidarCompressionNetwork, self).__init__(name="lidar_compression_network")
self.bottleneck = bottleneck
self.num_iters = num_iters
self.batch_size = batch_size
self.input_size = input_size
self.encoder = EncoderRNN(self.bottleneck, name="encoder")
self.decoder = DecoderRNN(name="decoder")
self.normalize = Lambda(lambda x: tf.multiply(tf.subtract(x, 0.1), 2.5), name="normalization")
self.subtract = Subtract()
self.inputs = tf.keras.layers.Input(shape=(self.input_size, self.input_size, 1))
self.DIM1 = self.input_size // 2
self.DIM2 = self.DIM1 // 2
self.DIM3 = self.DIM2 // 2
self.DIM4 = self.DIM3 // 2
self.loss_tracker = tf.keras.metrics.Mean(name="loss")
self.metric_tracker = tf.keras.metrics.MeanAbsoluteError(name="mae")
self.beta = 1.0 / self.num_iters
def compute_loss(self, res):
loss = tf.reduce_mean(tf.abs(res))
return loss
def initial_hidden(self, batch_size, hidden_size, filters, data_type=tf.dtypes.float32):
"""Initialize hidden and cell states, all zeros"""
shape = tf.TensorShape([batch_size] + hidden_size + [filters])
hidden = tf.zeros(shape, dtype=data_type)
cell = tf.zeros(shape, dtype=data_type)
return hidden, cell
def call(self, inputs, training=False):
# Initialize the hidden states when a new batch comes in
hidden_e2 = self.initial_hidden(self.batch_size, [8, self.DIM2], 64, inputs.dtype)
hidden_e3 = self.initial_hidden(self.batch_size, [4, self.DIM3], 64, inputs.dtype)
hidden_e4 = self.initial_hidden(self.batch_size, [2, self.DIM4], 128, inputs.dtype)
hidden_d2 = self.initial_hidden(self.batch_size, [2, self.DIM4], 128, inputs.dtype)
hidden_d3 = self.initial_hidden(self.batch_size, [4, self.DIM3], 128, inputs.dtype)
hidden_d4 = self.initial_hidden(self.batch_size, [8, self.DIM2], 64, inputs.dtype)
hidden_d5 = self.initial_hidden(self.batch_size, [16, self.DIM1], 64, inputs.dtype)
outputs = tf.zeros_like(inputs)
inputs = self.normalize(inputs)
res = inputs
for i in range(self.num_iters):
code, hidden_e2, hidden_e3, hidden_e4 = \
self.encoder(res, hidden_e2, hidden_e3, hidden_e4, training=training)
decoded, hidden_d2, hidden_d3, hidden_d4, hidden_d5 = \
self.decoder(code, hidden_d2, hidden_d3, hidden_d4, hidden_d5, training=training)
outputs = tf.add(outputs, decoded)
# Update res as predicted output in this iteration subtract the original input
res = self.subtract([outputs, inputs])
self.add_loss(self.compute_loss(res))
# Denormalize the tensors
outputs = tf.clip_by_value(tf.add(tf.multiply(outputs, 0.4), 0.1), 0, 1)
outputs = tf.cast(outputs, dtype=tf.float32)
return outputs
def train_step(self, data):
inputs, labels = data
# Run forward pass.
with tf.GradientTape() as tape:
outputs = self(inputs, training=True)
loss = sum(self.losses)*self.beta
# Run backwards pass.
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
# Update & Compute Metrics
with tf.name_scope("metrics") as scope:
self.loss_tracker.update_state(loss)
self.metric_tracker.update_state(outputs, labels)
metric_result = self.metric_tracker.result()
loss_result = self.loss_tracker.result()
return {'loss': loss_result, 'mae': metric_result}
def test_step(self, data):
inputs, labels = data
# Run forward pass.
outputs = self(inputs, training=False)
loss = sum(self.losses)*self.beta
# Update metrics
self.loss_tracker.update_state(loss)
self.metric_tracker.update_state(outputs, labels)
return {'loss': self.loss_tracker.result(), 'mae': self.metric_tracker.result()}
def predict_step(self, data):
inputs, labels = data
outputs = self(inputs, training=False)
return outputs
@property
def metrics(self):
return [self.loss_tracker, self.metric_tracker]