-
Notifications
You must be signed in to change notification settings - Fork 496
/
heapSort.js
52 lines (47 loc) · 1.38 KB
/
heapSort.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
* Implementation of heap sort sorting algorithm.
* Time Complexity: O(N*logN), N being size of array
* Space Complexity: O(1)
*/
function maxHeapify (arr, size, parent) {
/*
* :param arr: input array.
* :param size: hypothetical size of input array.
* :param parent: index of current node to create max-heap from.
*/
let left = 2 * parent;
let right = left + 1;
let largest = parent; // Initially considering parent as largest
if (left < size && arr[left] > arr[largest]) { // Left child is greater than parent
largest = left;
}
if (right < size && arr[right] > arr[largest]) { // Right child is greater than parent
largest = right;
}
if (largest !== parent) { // If parent is largest then subtree is max-heap
let temp = arr[parent];
arr[parent] = arr[largest]; // Swap largest child with parent
arr[largest] = temp;
maxHeapify(arr, size, largest); // Convert upper subtree to max-heap
}
}
function heapSort (arr) {
/*
* :param arr: Input array to be sorted.
*/
for (let i = arr.length / 2 - 1; i >= 0; --i) { // Build max-heap
maxHeapify(arr, arr.length, i);
}
for (let i = arr.length - 1; i >= 0; --i) {
let temp = arr[0]; // Swap first and last element
arr[0] = arr[i];
arr[i] = temp;
maxHeapify(arr, i, 0); // Create Max-Heap on reduced array
}
}
function main () {
let arr = [10, -4, 3, 13, 1, 123];
heapSort(arr);
console.log(arr);
}
main();