-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdsm_transform.py
489 lines (411 loc) · 18.7 KB
/
dsm_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#!/usr/bin/env python3
# coding: utf-8
import sys
from time import time
import numpy as np
from numpy import asarray
from osgeo import gdal, ogr
from shapely.geometry import Point, LineString
from shapely.geometry.polygon import orient
from shapely.wkt import dumps, loads
import os
import shutil
import math
# TODO : Support a debug flag for more log outputs
debug_output = 0
# Test true/false or 0/1 variables
def bool_string(s):
return s.lower() == "true" or s == "1"
# return a list of segments from a alinestring or a linearring
def segments(curve):
return list(map(LineString, zip(curve.coords[:-1], curve.coords[1:])))
# Calculate normal to a segment
def segment_normal(segment):
a = Point(segment.coords[0])
b = Point(segment.coords[1])
dx = b.x - a.x
dy = b.y - a.y
norm =math.sqrt(dx ** 2 + dy ** 2 )
normal = Point(dy/norm,-dx/norm,0)
return normal
# Convert X,Y,Z,nx,ny,nz coords into X,Z,Y,nx,nz,ny coords
# Equivalent to a rotation matrix
def xyz_to_xzy(array, compute_normals):
array[:,[2,1]] = array[:,[1,2]] # gives x y z
array[:,2] *= -1 # donne x z -y
if bool_string(compute_normals):
array[:,[5,4]] = array[:,[4,5]] # gives nx nz ny
array[:,5] *= -1 # gives nx nz -ny
return array
# Main method
def run(results_directory: str = "results",
input_dsm_file: str ="input.tiff",
input_footprint_file: str ="cutline.geojson",
output_file: str ="output.ply",
recenter_model: str ="false",
crop_feature: str ="false",
compute_normals: str ="true",
include_faces: str ="true",
transform_walls_floor: str ="true",
swap_axis: str ="false"):
# Remove results dir if exists
if not os.path.exists(results_directory):
os.mkdir(results_directory)
# Remove result file if it already exists
output_file_path = os.path.join(results_directory, output_file)
if not os.path.exists(results_directory):
os.remove(output_file_path)
# start timestamp
start = time()
# Read DSM
dsm_ds = gdal.Open(input_dsm_file)
# Read scaled footprint
scaled_footprint_ds = ogr.Open(input_footprint_file)
open_ = time()
# Set variables
transform = dsm_ds.GetGeoTransform()
width = dsm_ds.RasterXSize
height = dsm_ds.RasterYSize
dsm_xmin = transform[0]
dsm_ymax = transform[3]
dsm_xmax = dsm_xmin + transform[1] * width
dsm_ymin = dsm_ymax + transform[5] * height
no_data = dsm_ds.GetRasterBand(1).GetNoDataValue()
print(f"DSM input size is {width}x{height} pixels")
# Get elevation values from DSM as numpy array
dsm_values = dsm_ds.ReadAsArray()
# vertext indices initialization with -1 value
vertex_indices = np.full((height, width), -1)
init = time()
faces = None
############################
# Step 0 : Vertex indexing #
############################
begin_vertex = time()
# In case no_data valued vertices must be ignored
if bool_string(crop_feature):
# Select vertices indices where value is different from no data value
with_data_indices = np.nonzero(dsm_values != no_data)
# Get elevation values based on this selection
altitude_values = dsm_values[with_data_indices]
# Create an index list for these values
with_data_index_list = np.arange(with_data_indices[0].shape[0])
# Insert into vertex_indices the
vertex_indices[with_data_indices] = with_data_index_list
else:
# Do the same without ignoring no_data values
with_data_indices = (np.repeat(np.arange(height), width),
np.tile(np.arange(width), height))
altitude_values = dsm_values[with_data_indices]
with_data_index_list = np.arange(with_data_indices[0].shape[0])
vertex_indices[with_data_indices] = with_data_index_list
# Create vertices array
zeros = np.zeros_like(altitude_values)
ones = np.ones_like(altitude_values)
# If recenter_model get coordinates into a local systems
if bool_string(recenter_model):
vertex = np.vstack(( with_data_indices[1] * transform[1],
with_data_indices[0] * transform[5],
altitude_values,
zeros,
zeros,
ones ))
# TODO : Support another option to set model in ellispoidal coordinates
else:
vertex = np.vstack((transform[0] + with_data_indices[1] * transform[1],
transform[3] + with_data_indices[0] * transform[5],
altitude_values,
zeros,
zeros,
ones))
vertex = np.transpose(vertex)
end_vertex = time()
if(bool_string(swap_axis)):
vertex = xyz_to_xzy(vertex, compute_normals)
# Remove default normals if no normal is needed
if not bool_string(compute_normals):
vertex = vertex[:,:3]
if bool_string(include_faces):
####################################
# Step 1 : Roof faces calcultation #
####################################
begin_faces = time()
# Using numpy broadcasting we compute indices blocks for a sliding window
# of size 2x2
raw_sliding_windows_indices = np.array(
[0, 1, width, width+1]) + np.arange(width*(height-1))[:, None]
#print("raw_sliding_windows_indices : " + str(raw_sliding_windows_indices.shape))
# Delete sliding windows that are out of bounds
sliding_windows_indices = np.delete(raw_sliding_windows_indices, np.arange(
width-1, raw_sliding_windows_indices.shape[0], width), axis=0)
#print("sliding_windows_indices : " + str(sliding_windows_indices.shape))
# Get vertex indices for each sliding window block
vertex_indices_flat = vertex_indices.flatten()
raw_windowed_vertex_indices = vertex_indices_flat[sliding_windows_indices]
#print("raw_windowed_vertex_indices : " +str(raw_windowed_vertex_indices.shape))
# We differentiate between two cases:
# * Indices blocks where all vertex indices are positive
# * Indices blocks where only one vertex index is negative
filter = np.count_nonzero(raw_windowed_vertex_indices == -1, axis=1)
windowed_vertex_indices_all_positive = raw_windowed_vertex_indices[filter < 1]
windowed_vertex_indices_only_one_negative = raw_windowed_vertex_indices[filter == 1]
#print("windowed_vertex_indices_all_positive : " +str(windowed_vertex_indices_all_positive.shape))
#print("windowed_vertex_indices_only_one_negative : " +str(windowed_vertex_indices_only_one_negative.shape))
# First case: Indices blocks where all vertex indices are positive
# Get vertices x,y,z coordinates
svp = vertex[windowed_vertex_indices_all_positive][:, :, :3]
#print("svp : " + str(svp.shape))
# Calculate distance between vertices
dst = np.square(np.linalg.norm(svp[:, 0, :]-svp[:, 2, :], axis=1))-np.square(
np.linalg.norm(svp[:, 1, :]-svp[:, 3, :], axis=1))
#print("dst : " + str(dst.shape))
# Create faces
case_1 = windowed_vertex_indices_all_positive[np.where(dst <= 0)]
#print("case_1 : " + str(case_1.shape))
face_1 = np.vstack(
(case_1[:, 0], case_1[:, 2], case_1[:, 3], case_1[:, 0], case_1[:, 3], case_1[:, 1]))
face_1 = np.transpose(face_1).reshape(-1, 3)
#print("face_1 : " + str(face_1.shape))
case_2 = windowed_vertex_indices_all_positive[np.where(dst > 0)]
#print("case_2 : " + str(case_2.shape))
face_2 = np.vstack(
(case_2[:, 0], case_2[:, 2], case_2[:, 1], case_2[:, 1], case_2[:, 2], case_2[:, 3]))
face_2 = np.transpose(face_2).reshape(-1, 3)
#print("face_2 : " + str(face_2.shape))
# Second case: Indices blocks where only one vertex index is negative
# Get vertices x,y,z coordinates
m, n = windowed_vertex_indices_only_one_negative.shape
# Reorder indices to always be in clockwise order configuration
no_to_reorder = windowed_vertex_indices_only_one_negative[
windowed_vertex_indices_only_one_negative[:, 0] == -1, :]
to_reorder = windowed_vertex_indices_only_one_negative[
windowed_vertex_indices_only_one_negative[:, 0] != -1, :]
order = [0, 2, 3, 1]
reordered = to_reorder[:, order]
# Create faces
face_3_1 = no_to_reorder[no_to_reorder != -1].reshape(-1, n-1)
face_3_2 = reordered[reordered != -1].reshape(-1, n-1)
# Concatenate all faces
faces = np.concatenate((face_1, face_2, face_3_1, face_3_2))
end_faces = time()
###############################################
# Step 2 : Roof vertices normal calculation #
###############################################
if bool_string(compute_normals):
begin_normals = time()
# Add a border of -2 indices around the original array
padded_vertex_indices = np.pad(
vertex_indices, ((1, 1), (1, 1)), constant_values=((-2, -2),))
# print("padded_vertex_indices : " + str(padded_vertex_indices.shape))
# We use here a diamond shaped sliding window
h, w = padded_vertex_indices.shape
raw_padded_window_indices = np.array(
[w, 0, w-1, 2*w, w+1]) + np.arange(w*(h-2))[:, None]
# print("raw_padded_window_indices : " + str(raw_padded_window_indices.shape))
# Delete first and last colum of each row
deletion_index = np.array([0, w-1]) + np.arange(0, w*(h-2), w)[:, None]
deletion_index = deletion_index.flatten()
padded_window_indices = np.delete(
raw_padded_window_indices, deletion_index, axis=0)
# print("padded_window_indices : " + str(padded_window_indices.shape))
# Extract vertices index list for each sliding window
windowed_padded_vertex_indices = padded_vertex_indices.flatten()[
padded_window_indices]
# print("windowed_padded_vertex_indices : " + str(windowed_padded_vertex_indices.shape))
# print(windowed_padded_vertex_indices[0])
# At this point we now have everything to calculate the normal for each point
# If we encounter -2 or -1 indices we know we can ignore them
# Lets perform a dot product to calcule normals
# Resulting normal array
normal = np.zeros(3, dtype=float)
zero_normals = np.tile(normal, (vertex.shape[0], 1))
# We only consider valid "center" point for normal calculation (different from -2 or -1)
wpv_has_center = windowed_padded_vertex_indices[windowed_padded_vertex_indices[:, 0] >= 0, :]
#print("wpv_has_center : " + str(wpv_has_center.shape))
# We then gather valid surrounding points
wpv_north_west = wpv_has_center[(wpv_has_center[:, 1] >= 0) & (
wpv_has_center[:, 2] >= 0), :]
wpv_west_south = wpv_has_center[(wpv_has_center[:, 2] >= 0) & (
wpv_has_center[:, 3] >= 0), :]
wpv_south_east = wpv_has_center[(wpv_has_center[:, 3] >= 0) & (
wpv_has_center[:, 4] >= 0), :]
wpv_east_north = wpv_has_center[(wpv_has_center[:, 1] >= 0) & (
wpv_has_center[:, 4] >= 0), :]
# We use numpy to perform dot product
cross_north_west = np.cross(
vertex[wpv_north_west[:, 1]][:, :3], vertex[wpv_north_west[:, 2]][:, :3])
cross_west_south = np.cross(
vertex[wpv_west_south[:, 2]][:, :3], vertex[wpv_west_south[:, 3]][:, :3])
cross_south_east = np.cross(
vertex[wpv_south_east[:, 3]][:, :3], vertex[wpv_south_east[:, 4]][:, :3])
cross_east_north = np.cross(
vertex[wpv_east_north[:, 4]][:, :3], vertex[wpv_east_north[:, 1]][:, :3])
# Add to the result normals array
zero_normals[wpv_north_west[:, 0]] += cross_north_west
zero_normals[wpv_west_south[:, 0]] += cross_west_south
zero_normals[wpv_south_east[:, 0]] += cross_south_east
zero_normals[wpv_east_north[:, 0]] += cross_east_north
norms = np.linalg.norm(zero_normals, axis=1)
norms[norms == 0] = 1
normals = zero_normals / norms[:, None]
vertex[:, 3:] = normals
end_normals = time()
##################################
# Step 3 : Create roof and walls #
##################################
if bool_string(transform_walls_floor):
# Use gdal to general vertices from footprint shape
footprint_lyr = scaled_footprint_ds.GetLayer()
# TODO: Handle error in case of a multipolygon
footprint = footprint_lyr.GetNextFeature()
# Get roof altitude from IGN BDTOPO
alti_min_sol = footprint.GetFieldAsString("altitude_minimale_sol")
try:
alti_min_sol=float(alti_min_sol)
except ValueError:
print("alti_min_sol unavailable. Process will terminate")
sys.exit(2)
##################
# floor creation #
##################
begin_floor = time()
x_min, x_max, y_min, y_max = footprint_lyr.GetExtent()
# Raster memory creation
# The DSM resolution is used for the new raster
pixel_size = abs(transform[5])
x_res = int((x_max - x_min) / pixel_size)
y_res = int((y_max - y_min) / pixel_size)
raster_mem_ds = gdal.GetDriverByName('MEM').Create('', x_res, y_res, gdal.GDT_Byte)
raster_mem_ds.SetGeoTransform((x_min, pixel_size, 0, y_max, 0, -pixel_size))
geotransform = raster_mem_ds.GetGeoTransform()
band = raster_mem_ds.GetRasterBand(1)
band.SetNoDataValue(255)
# Polygon rasterization
gdal.RasterizeLayer(raster_mem_ds, [1], footprint_lyr, burn_values=[1])
# Read raster as numpy array
array = band.ReadAsArray()
# Get indices with value
floor_data_indices = np.nonzero(array == 1)
# Vertices array creation
altis_min_sol = np.ones_like(floor_data_indices[0]) * float(alti_min_sol)
floor_points = np.vstack(( floor_data_indices[1] * geotransform[1],
floor_data_indices[0] * geotransform[5],
altis_min_sol ))
floor_points = np.transpose(floor_points)
# Add normals if necessary
if bool_string(compute_normals):
vertical_normal = np.array([0,0,-1])
floor_normals = np.tile(vertical_normal, (len(floor_points), 1))
floor_vertices = np.concatenate((floor_points,floor_normals),axis=1)
else:
floor_vertices = floor_points
if(bool_string(swap_axis)):
floor_vertices = xyz_to_xzy(floor_vertices, compute_normals)
end_floor = time()
##################
# walls creation #
##################
begin_walls = time()
multipolygons = loads(footprint.GetGeometryRef().ExportToWkt())
# TODO: Handle error in case of a multipolygons
raw_polygon = multipolygons.geoms[0]
polygon = orient(raw_polygon)
linearring = polygon.exterior
ring_segments = segments(linearring)
xmin = linearring.bounds[0]
ymin = linearring.bounds[1]
xmax = linearring.bounds[2]
ymax = linearring.bounds[3]
add_distance = pixel_size
distance = 0
# Using numpy to be faster than with loops
wall_top_pts = []
wall_lines = []
while distance < linearring.length:
seed = linearring.interpolate(distance)
segment = 0
# TODO : Handle borderline error cases
for s in ring_segments:
if s.distance(seed) < 1e-8:
segment = s
break
normal = segment_normal(segment)
wall_top_pts.append(np.array([seed.x,seed.y,seed.z,normal.x,normal.y,normal.z]))
distance += add_distance
for p in wall_top_pts:
height = p[2] - float(alti_min_sol)
repeats = int(height / add_distance)
decrements = np.arange(repeats+1)*add_distance*-1
wall_line = np.tile(p,(repeats+1,1))
wall_line[:,2] = wall_line[:,2]+decrements
wall_lines.append(wall_line)
np_wall_points = np.vstack(wall_lines)
# Shift to local coordinates
origin = np.array([xmin,ymax,0,0,0,0])
np_wall_points = np_wall_points - origin
# Compute normals
if bool_string(compute_normals):
wall_vertices = np_wall_points
else:
wall_vertices = np_wall_points[:,:3]
if(bool_string(swap_axis)):
wall_vertices = xyz_to_xzy(wall_vertices, compute_normals)
# Merge floor and walls vertices
building_vertices = np.concatenate((floor_vertices,wall_vertices),axis=0)
end_walls = time()
# Merge floor and walls vertices with building vertices
vertex = np.concatenate((vertex,building_vertices))
if bool_string(recenter_model):
vertex[:,1] -= vertex[:,1].min()
if bool_string(compute_normals):
template = """ply
format ascii 1.0
element vertex {nvertices:n}
property float x
property float y
property float z
property float nx
property float ny
property float nz
element face {nfaces:n}
property list int int vertex_index
end_header
"""
else:
template = """ply
format ascii 1.0
element vertex {nvertices:n}
property float x
property float y
property float z
element face {nfaces:n}
property list int int vertex_index
end_header
"""
context = {
"nvertices": len(vertex),
"nfaces": len(faces) if faces is not None else 0
}
begin_write = time()
# Pretty slow but hard to something faster
with open(output_file_path, "wb") as outfile:
tpl = template.format(**context)
outfile.write(tpl.encode())
np.savetxt(outfile, vertex, fmt="%.6f")
if bool_string(include_faces):
np.savetxt(outfile, faces, fmt="3 %i %i %i")
end_write = time()
print("Time elapsed in each task :")
print(f" Open: {open_ - start}")
print(f" Init: {init - open_}")
print(f" Vertex: {end_vertex - begin_vertex}")
if bool_string(include_faces):
print(f" Faces: {end_faces - begin_faces}")
if bool_string(compute_normals):
print(f" Normals: {end_normals - begin_normals}")
if bool_string(transform_walls_floor):
print(f" Floor: {end_floor - begin_floor}")
print(f" Walls: {end_walls - begin_walls}")
print(f" Write: {end_write - begin_write}")
print(f" Total: {end_write - start}")
print(f"Successfully transformed \"{input_dsm_file}\" into \"{output_file_path}\"!\n")