
Prepared by: Petri Laari (petri.laari@ericsson.com)

Version: 1.0 (22.8.2023)

Extending ecosystem support in SDF

1 Introduction

The main goal of this work is to extend the ecosystem support in Semantic Definition Format

(SDF) [7] with new ecosystems. In this work we took Bluetooth Mesh models as a new

ecosystem to verify the capabilities of the current SDF specification. Bluetooth is one of the

largest ecosystems of IoT devices, thus it is essential that SDF can support the features that

are used in Bluetooth for the device specifications. The main target is to provide support for

onboarding of Bluetooth devices into systems that use SDF for cross-ecosystem device

support.

Bluetooth Mesh models are a new set of models that have been created when the Bluetooth

mesh networking was introduced. The Bluetooth Mesh profile specification defines the

fundamental requirements for nodes joining the Bluetooth mesh network. The Bluetooth

Mesh model specification, in turn, defines further the basic functionality, together with the

states that the node maintains and messages that a device uses to communicate with other

nodes in the mesh network.

Before introducing the mesh models, the Bluetooth specified "services" and "characteristics"

to define the Bluetooth nodes and their capabilities. Some of the Mesh models have adopted

also selected characteristics.

In this document, we propose a way to model the Bluetooth nodes using the Semantic

Definition Format (SDF) and list some open questions for further discussion. We also

introduce shortly the JavaScript PoC implementation for making automatic conversions from

the Bluetooth Mesh models to SDF. This work covers the conversion of Bluetooth states and

messages into SDF properties, actions, and events.

At the time of writing, the Bluetooth Mesh models are not available as machine-readable

definitions, e.g., in YAML or JSON. The model definitions are in various documents

provided by the Bluetooth community and for the purpose of this work, we generated YAML

definitions for selected Mesh models that can be used with the PoC implementation for

testing the automatic conversion from a Bluetooth Mesh model to SDF.

2 Bluetooth Node

2.1 Bluetooth Node definition

A Bluetooth node is defined in Bluetooth Mesh model Overview specification as depicted in

Figure 1.

mailto:petri.laari@ericsson.com
https://datatracker.ietf.org/doc/draft-ietf-asdf-sdf/
https://datatracker.ietf.org/doc/draft-ietf-asdf-sdf/
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/
https://www.bluetooth.com/specifications/specs/mesh-model-1-0-1/
https://www.bluetooth.com/specifications/specs/mesh-model-1-0-1/
https://www.bluetooth.com/bluetooth-resources/bluetooth-mesh-models/

Figure 1 Bluetooth Node definition

Each Bluetooth node (device) consists of one or more elements, where each element is

addressable from outside, e.g. with an IP address. Elements further consists of one or more

Mesh models, defining the functionality of the element. The following Figure 2 (Bluetooth

White Paper: Building a Sensor-Driven Lighting Control System Based on Bluetooth Mesh

[5]) shows a luminaire with two elements, one for the light itself and one for the controller.

The controller takes the input from various sensors and modifies the lighting state

accordingly using the state binding between Light Lightness Linear state and Light LC Linear

Output State. The light element can also be addressed directly from outside, using for

example an on/off switch that manually can operate the light omitting the controller element.

Figure 2 Lighting system consisting of two elements

https://www.bluetooth.com/wp-content/uploads/2020/09/MshWP_Lighting_v1.0.pdf

Each of the Models consists of one or more States, describing the information that is stored

on the device. For example, on lighting system, the Light CTL (Color-tunable Light)

Temperature State maintains the color temperature value. The Models also specify the

messages that the model can send and receive to communicate with other Models, for

example for controlling the lighting color temperature, the client can send Light CTL

Temperature Set, containing various parameters, such as the target temperature value and the

execution delay at the server.

2.2 States

2.2.1 State information

"A state is a value representing a condition of an element" [1], section 2.3.1. This can be, for

example, an on/off state defining if the status of the element is on or off. If a state contains

multiple values, it is defined to be a composite state [2] section 1.4.1.2. A composite state is a

way to combine multiple states and it is not a technical feature on the device, thus it is not

needed to be mapped to the SDF and sdfProperties. A single state maps roughly to an

sdfProperty in SDF.

Figure 3 Light Lightness Actual state

In Figure 3, The Light Lightness Actual state’s possible values are depicted as defined in the

Bluetooth Mesh model documentation. Figure 4 and Figure 5 show two ways how to convert

that state definition with uint16 into SDF Property. The first one uses sdfChoice to describe

the possible values, maintaining the detailed semantics of the smallest and largest value from

the Bluetooth specification. The second one uses only one property with minimum and

maximum values given.

"LightLightnessActual": {

 "label": "Light Lightness Actual",

 "description": "The Light Lightness Actual state ...”,

 "writable": true,

 "type": "integer",

 "sdfChoice": {

 "Light is not emitted by the element":

 {"const": 0},

 "The perceived lightness of a light emitted by the element": {

 "minimum": 1,

 "maximum": 65534

 },

 "The highest perceived lightness of a light emitted by the element":

 {"const": 65535}

 }

}

Figure 4 Using sdfChoice for representing uint16 to maintain semantics from the Bluetooth specification.

"LightLightnessActual": {

 "label": "Light Lightness Actual",

 "description": "The Light Lightness Actual state ...",

 "writable": true,

 "type": "integer",

 "minimum": 0,

 "maximum": 65535

}

Figure 5 Using Integer with min and max values to represent uint16.

2.2.2 Bound States

Relations between states are called state bindings. A binding defines the connection between

two states, i.e., when one state value changes, it may indicate that the bound state must be

recalculated. Bindings can be unidirectional or bi-directional. Bindings can be also

conditional i.e., some other state may control the binding by enabling it or disabling it. How

this is achieved is left for the Bluetooth device implementors. States can be bound within a

node between various Elements and Models.

In the SDF class level definition, it may be enough to specify e.g. with sdfRelation defined in

“Extending Relation Information for Semantic Definition Format (SDF)” internet-draft

[6] the potential connection between two states. The details of the actual recalculation of state

values are not considered to be part of the class-level definition but may be defined for

example in the mapping file.

In the following Figure 6, the Generic Power Actual state is bound to the Generic OnOff

state. When the Generic Power Actual state value goes to zero, the Generic OnOff value is set

to off (Boolean false) and when it changes to some non-zero value, the Generic OnOff value

is set to on (Boolean true).

https://datatracker.ietf.org/doc/draft-laari-asdf-relation

{

 "sdfObject": {

 "GenericPowerLevelServer": {

 "label": "Generic Power Level Server Model",

 "description": "Power level server, Mesh model specification, 3.3.6",

 "sdfProperty": {

 "GenericPowerActual": {

 "label": "Generic Power Actual",

 "type": "integer",

 "minvalue": 0,

 "maxvalue": 65535,

 "sdfRelation": {

 "description": "when powerlevel goes to zero, the genericOnOff state

 is set to off, and when it goes > 0, the state is set

 to on. ",

 "relType": "https://example.com/bluetooth/boundstate",

 "target": "#/sdfObject/GenericPowerLevelServer/sdfProperty/GenericOnOff"

 }

 },

 "GenericOnOff": {

 "description": "Generic OnOff - status of the device",

 "type": "boolean"

 }

 ...

 }

 }

 }

}

Figure 6 Bluetooth Bound state example in SDF

2.3 Models

Bluetooth Mesh models are used to describe the basic functionality of the nodes in a mesh

network. Mesh models include generic models defining functionality that is standard across

device types, and models, such as lighting control, sensors, and time and scenes, to support

key mesh scenarios.

Mesh models can be either clients or servers. The client models do not have states, but the

server models have as they maintain the node related information. There are also two types of

server models: the normal server model cannot access all the configuration information on

the node, but the setup server can do that, thus there is a possibility to create different access

policies.

3 Bluetooth Mesh Node and SDF

3.1 Semantic Definition Format

SDF is a metamodel and a format for describing capabilities of IoT devices. An SDF file

contains one or more descriptions of ways to interact with a device using a protocol to

retrieve data or change state. There are several key SDF use cases:

• Device and system modeling: An IoT system is described using SDF. At its simplest, an SDF
document represents an IoT device with its associated interaction capabilities, such as what
properties does it have, what actions can be done on the device and what kind of telemetry
feeds can be set up. In a more complex scenario, the composition capabilities of SDF are
used to build up and describe the various sub-components and how they relate to each
other, resulting in a full ecosystem-independent description of the system.

• Model translation: The initial OneDM use case was to use SDF as an intermediate format in
the translation from one ecosystem (e.g., OCF) to another (e.g., IPSO). This operation relies
on data model mapping mechanisms contained in translators to work. The model translation
can either be statically performed at system design time, or dynamically incorporated into a
semantic gateway. The primary benefits of using SDF as intermediate format are that it
reduces the number of necessary crosswise translations from NxN to Nx1 (i.e., every
ecosystem needs to translate only to/from SDF instead of each other) and then streamlines
those translations via common toolchains.

• Common system description schema: An SDF document representing a device or system can
also be used as documentation to be used for e.g., automated creation of database schemas
representing the device or system; or automated API generation towards the device or
system.

3.2 Mapping a Bluetooth Mesh node to SDF

To enable conversion between the Bluetooth Mesh and SDF models, the Bluetooth Node

model has to be mapped on high level to the SDF elements. The structure of the Bluetooth

Node definition is not one-to-one with the SDF elements, thus there is a need to consider

different alternatives for the mapping. The Bluetooth node has four levels of definitions as

described in the previous subsection, while SDF has three: sdfThing, sdfObject, and a

selection of affordances (sdfProperties, sdfActions, and sdfEvents).

In the following Figure 7, potential mapping between Bluetooth Mesh and SDF concepts are

described. A Bluetooth node, containing four defined hierarchical elements (states, model,

element, and node), can be mapped to SDF using sdfThing nesting. This is achieved by

creating an sdfThing from the Bluetooth Node and further including sdfThing(s) that are

created from the Bluetooth elements. The assumption is that these sdfThings, based on the

elements that are addressable in Bluetooth, can be addressed using the SDF names. Further

definitions of the concept are left for further study. The sdfThings created from the elements

consists of sdfObjects that are based on the Bluetooth models, which further are consisting of

sdfProperties, sdfActions, and sdfEvents matching the States and messages in the Mesh

models.

However, later in this document, according to the selected approach in the activity, we do not

consider the node and element entities, but we focus only on the models, states, and

communication between the models, i.e., mesh model messages.

Bluetooth Mesh SDF (nesting sdfThing)

Node sdfThing

Element sdfThing (nested)

Model sdfObject

State sdfProperty

Figure 7 Mapping Bluetooth Node to SDF

4 Example: Light Lightness Server model

In the following, we show some of the Mesh models and how they extend other models.

Figure 8 shows the construction of a Light Lightness Server model. The root models on the

left are models that are not extending any other models. These are further extended by other

models towards the right. In the following subsections, we describe the yellow-marked

models in more detail.

Figure 8 Light Lightness Server

4.1 Generic OnOff Server Model (SIG ID: 0x1000)

Bluetooth Models communicate with each other using messages. The different types of

messages are defined in the model specifications.

In the following, the Generic OnOff Server (Mesh Model specification [2], section 3.1.1)

translated to SDF is shown as an example. The Generic OnOff is a root model, which does

not extend other models. The model consists of one state, Generic OnOff Server describing

with zero or one, if the server is off or on. The Generic OnOff Server is described in

Bluetooth Mesh model [2] specification and the full Bluetooth Mesh model in YAML as well

as SDF converted version in JSON are presented in Appendixes B, section 9.2 and C, section

9.3.

In the sdfAction section shown, we have defined the interface, how other models can interact

with the OnOff server. The message can be get or set, and it can also be set unacknowledged,

in which case the no response is expected as a response from the device. For the first two

messages, the server responds with the status message.

In sdfData, the parameters are listed for both the incoming and outgoing messages. In the

following example, the message “Generic OnOff Set Unacknowledged” is shown together

with the parameters that the message contains.

The more complete SDF model can be found from Appendix E, Section 9.3

"sdfAction": {

 "Generic OnOff Set Unacknowledged": {

 "description": "Set OnOff status, do not acknowledge",

 "sdfInputData": "#/sdfData/Generic_OnOff_Set_Unacknowledged"

 }

 }

 …

 "sdfData": {

 "Generic_OnOff_Set_Unacknowledged": {

 "type": "object",

 "properties": {

 "OnOff": {

 "description": "The target value of the Generic OnOff

 state: 0 = off, 1 = on, boolean",

 "type": "boolean"

 },

 "TID": {

 "description": "Transaction identifier",

 "type": "integer"

 },

 "Transition Time": {

 "description": "Transition Time, see section 3.1.3

 (Mesh Model specification)",

 "type": "integer",

 "minimum": 0,

 "maximum": 255

 },

 "Delay": {

 "description": " Message execution delay in 5

milliseconds

 steps",

 "type": "integer"

 }

 }

 },

Figure 9 Partial SDF model of Generic OnOff Server: sdfAction

4.2 Light Lightness Server (SIG ID: 0x1300)

The Light Lightness Server model extends the Generic OnOff Server model (among

others). For the full SDF model, see Appendix D in Section 9.4. This section focuses on

the Bluetooth Mesh model requirement, where two model implementations need to

reside on the same node. In this case, the Light Lightness Setup Server must exist on the

node. Thus, we define the requirement using sdfRelation (defined in an SDF extension

Internet-Draft draft-laari-asdf-relations [6])

"sdfObject": {

 "lightLightnessServer": {

 "label": "lightLightnessServer",

 "description": "Extends Generic Power OnOff Server model",

 "sdfRelation": {

 "relType": "bt:#/Relationtypes/MandatoryOnSameNode",

 "target": "bt:#/sdfObject/LightLightnessSetupServer",

 "description": "Setup Server needed on the same node",

 "maxItems": 1,

 "minItems": 1

 }

 ...

 }

}

Figure 10 Light Lightness Server; another model needed to be implemented on the same node

Another requirement for Light Lightness Server is that it must support also Model

Publication state. This state is a composite state that controls parameters of messages that are

published by a model. Within an element, each model has a separate instance of Model

Publication state. The Model Publication state consists of six individual states. When

presented using SDF, these states will be presented as separate sdfProperties.

4.3 Light LC Server & Light LC Setup server model

The Light Lightness Controller (LC) server (Figure 11) controls lightness of an element

implementing a Light Lightness Server model through a binding with the Light

Lightness Linear state of an element. It extends the Light Lightness Server model and

contains also some device Property States.

The Property States in Light LC Server define the configuration of the actions on the server,

i.e., how the device should respond to the incoming sensor messages. These property states

define for example the delay between the occupancy sensor informing that people are

detected in the area and the event when the light is turned on. The device properties for each

Mesh model are listed in Bluetooth Mesh Model specification [2] and further definitions can

be found from Mesh Device Properties [4]. The device properties that are used for the Mesh

models are listed in Section 9.1, Appendix B.

The Light LC Setup server (0x1310) further extends the Light LC Server and allows the

control of the property states enabling changes in the behavior of the Light LC Server.

https://datatracker.ietf.org/doc/draft-laari-asdf-relations/
https://www.bluetooth.com/specifications/specs/mesh-device-properties-2/

Figure 11 Light LC Server, Light LC Setup Server

5 Mapping details

Most of the mappings are straightforward, but there are some corner cases that may need

some more attention, in this subsection we list some of the cases that may need more

evaluation.

5.1 Characteristics

Before the mesh models were introduced in Bluetooth, the node operations were described as

services and characteristics. A service represents a feature of a device and characteristics are

items of data that belong to a particular service [9]. The way the models are now presented in

Mesh models is different from the older version. However, the characteristics can be still

used as describing the state information in Mesh models and a couple of them have been

defined to be used in some of the Mesh models via the device properties. These are defined as

“property states” in the Mesh documentation. The characteristics are defined in YAML files

and they can be converted automatically with reasonable fidelity to SDF. The tool that we

have, supports this conversion (see section 6).

One characteristic file can contain multiple values defined in different “fields”. Each of them

can be translated into a separate sdfProperty, containing a single defined value. In this work,

we limited the conversion only to Mesh models and all the characteristics that are required

for the Mesh models contain each only one value field. Thus, we are not converting the

characteristic file itself, but we are including only the required values from the characteristic

to the sdfProperty in the conversion.

For further study: There are characteristics that contain multiple fields which may benefit

from converting a single characteristic into a separate sdfObject, with multiple sdfProperties.

However, this is out of the scope of this work, but the conversion mappings are listed in the

conversion table in Figure 12 for completeness.

In this section we have considered only those characteristics, that are used by the Mesh

models. They all define only a single value and are trivial when mapping to SDF. Some other

characteristics can have more complex structures, e.g., having multiple values or types of

struct that are further defined in the Bluetooth documentation.

Characteristics used in the Mesh models map to device property states and in SDF they map

to SDF Properties. The following table shows two alternative mappings from the Bluetooth

Characteristic to corresponding SDF entities:

BT

Characteristic

SDF Entity (to sdfObject),

Note: For further study

**)

SDF Entity (to a

single sdfProperty)
Notes

Characteristic

identifier

- - URI identifying the

characteristic

Characteristic

name

sdfObject name - This is the name of the

characteristic

Characteristic

description

sdfObject Description - This description goes to

the SDF info block

Structure sdfProperty sdfProperty Status/property

definitions

Field Name of sdfProperty

definition

Name of sdfProperty

definition
Identifying the

sdfProperty

Field type type data quality type data quality Type of data (e.g., used

by property), see also

section 5.3

Field size minimum/maximum data

quality *)

minimum/maximum

data quality *)
Depends on the type in

BT characteristic

Field

Description

Description of the

sdfProperty

Description of the

sdfProperty
Description of this

property. Information

about the characteristic,

e.g., units, may be

included in this field as

human-readable text

(that needs to be parsed

for automated

translation).

Figure 12 Mapping BT Characteristic to SDF

*) This conversion depends on the type. For example, if type is uint16 (in SDF “integer”),

this converts to SDF data qualities of minimum 0 and maximum 65535. The characteristics

used in this work are all numerical types, thus there is no need to define size separately, but it

can be calculated from the type, minimum, and maximum qualities.

**) This column demonstrates converting characteristics containing multiple value fields into

sdfObject (for further study).

5.2 Extending Model

Bluetooth Mesh defines a set of root models that can be extended by other Mesh models to

create models defining more functionality. In SDF, sdfRef can be used to define that this

model is extending some other model. This sdfRef:ed model can be copied completely into

this SDF model. In Bluetooth Mesh models, the operation is similar when the extended

objects are part of the extending model.

5.3 Data types

There is a wide variety of data types in Bluetooth models. These are not directly mapped to

SDF, but they can be represented using “number” or “integer” providing minimum and

maximum values for them, e.g., BT Mesh type “uint16” is converted to "integer" with

minimum 0 and maximum 65535 in the sdfProperty definition.

Some values that are defined for the models in the Bluetooth specification are scaled in the

implementation. That is, there may arrive integer n which is stored in the state and it is

further scaled at the application to represent the real value. This applies also to the

characteristic, defined in GATT (GSS) specification where the representative values are

calculated from the raw stored value using a formula (see Section 9.1, Appendix B for the

GATT characteristic calculations that are relevant for the Mesh models). This is a protocol

binding issue and requires definitions in the corresponding companion document specifying

the protocol specific details.

6 Implementations

6.1 Bluetooth to SDF: bt2sdf.js

This section describes our current implementation for converting Bluetooth models to SDF.

The implementation will be available later in the GitHub.

The implementation supports various conversions, but the most important one related to this

document is the Mesh model YAML to SDF conversion:

node bt2sdf.js -y mesh-model-file.yaml

NOTE: The conversion software is under development, and the description in this section

may change or become invalid. However, the accompanying README file will be up-to-

date and more information can be found from there.

As an example, one YAML file that we generated for the “Generic OnOff Server” can be

found from the Appendix B, section 9.2.

6.2 Mesh Model YAML file design

For testing the automatic conversion, we created a simple YAML design for the Mesh

models. The current example is the generic OnOff Server, which is a root model and does not

require other models. The example file is available at the GitHub repository.

6.2.1 Entities in the YAML

The YAML file design currently uses the following entities:

model - this defines that this is a Mesh model

https://github.com/plaari/sdf-bt-mesh-experimental/tree/main

states - the state information from the Mesh model specification

messages - the messages that are either sent or received by the state

fields - these are the parameters of the messages, containing now the type, size and

description. The direction is defined either "in" or "out" depending if the parameter is arriving

or leaving the state. The field value Response provides a reference to another parameter set is

used for a response messages. References are used to avoid duplicate definitions in the file.

6.3 Practical issues

• The message parameters in the YAML file are currently simply defined to be "in" or

"out" depending on the message direction. This relates to the SDF so that parameters

“in” can be mapped to sdfInputData and “out” to sdfOutputData.

• The Mesh specification defines "boolean" as an uint8 value "0" or "1", which is

further in the mesh model specification text defined to be actually boolean.

However,such free-form text description is not a robust option for automatic

translation. The current translator implementation searches for a string "boolean" in

the description of uint8 fields and translates such fields to SDF boolean type.

• Bluetooth Mesh has different sizes of unsigned and signed integers. The different

types of data types here are implemented in SDF using "number" type with minimum

and maximum fields, which allows also reverse conversion if needed

• When a message contains a set of parameters, they are now converted to sdfData, with

type "object" and all parameters are listed as properties of the object.

7 Conclusions and discussion topics

From the manual mapping between Mesh and SDF models, we can see that the conversion is

possible, if there are machine readable Mesh model files available with sufficient

information. We have also created a proof of concept implementation that takes a Mesh

model YAML file as input and provides SDF output. The YAML file is our own design as

machine readable format for Mesh models is not currently defined by the Bluetooth SIG. The

mesh model YAML files can be manually created using the Mesh model specifications.

With the current knowledge, all Bluetooth Mesh elements seem to be possible to be described

using SDF. This indicates that there is no need to design any extensions or do modifications

to the basic SDF specification. However, not all the Mesh models have a strict structure and

may contain exceptions that may affect the formal definitions. This in turn may have effect

on the SDF definitions.

7.1 Discussion topics

• Any definition for Mesh Model Subscribe / Publish? How this is handled in Bluetooth? The
way the subscriptions are made is not obvious from the Mesh Profile, nor Model documents,
not at least in the Mesh models. Shall we have some specific sdfActions for subscribing or
sdfEvent for publishing changed state information to support this in the SDF model?

• Mesh model bound states: In this document one solution is described, but is it the way to
go? Each bound state requires some operation / recalculation at the other state, but where

should these be described? One way to do it is to include this in the mapping file, or then it
left for the developer to figure out. This should follow the Bluetooth thinking.

• Current data type conversion of integer values with specific type in Bluetooth spec (e.g.,
uint8, uint16) is done by using “integer” SDF type with minimum and maximum values to
denote the possible range of such types. This allows also reverse conversion to original data
types.

o Note: there are cases, where the field defines clearly Boolean operation (on/off), but
the field is still using uint8. Values 2-255 are described as prohibited.

• If there is a requirement in the BT Mesh model specification, such as in section 5.3, that
another model must be implemented on the same node with the specified model, is that
something to specify also in SDF model and if yes, how we can define it there? One option is
to use the sdfRelation extension to describe the relation to another component with such
information.

• Characteristics: currently only simple Bluetooth characteristics are used, i.e., one
characteristic file can be converted into single sdfProperty. However, there are other
characteristics not used in mesh models, that contain more information. This may indicate
that they should be converted to sdfObjects, but it is out of the scope of this evaluation
work.

• TID field: the Bluetooth Transaction identifier (TID) is used in some cases as a parameter to
identify a specific message exchange. This may be a protocol mapping issue and not actually
modeling issue.

• Mesh model defines messages that either do or do not require acknowledgement. Should
these be converted to separate messages in sdfActions, or shall the unacknowledged
messages be handled only as protocol issues (possibly with mapping file)?

• Is the suggested sdfRef usage correct when extending another model? While all the
properties from the original models are included in the model, the sdfRef would provide this
for SDF. Example: Appendix D: extending GenerifOnOff and GenericLevel

Thanks to Ericsson team Ari Keränen, Niklas Widell, and Lorenzo Corneo, as well as to

Michael Koster, Carsten Bormann, and Szymon Slupik for their input.

8 References

[1] Bluetooth Mesh profile specification, v 1.0.1, 21.1.2019, Mesh Working Group

[2] Bluetooth Mesh model specification, v 1.0.1, 21.1.2019, Mesh Working Group

[3] Bluetooth Mesh Models, technical overview, v 1.0, 27.3.2019, Martin Woolley

[4] Mesh Device Properties, v 2, 15.9.2020, Mesh Working Group

[5] Bluetooth White Paper: “Building a Sensor-Driven Lighting Control System Based on
Bluetooth Mesh”, v1.0, 25.8.2023, Mesh Working Group

[6] “Extending Relation Information for Semantic Definition Format (SDF)”, 12.12.2022, IETF
ASDF WG

[7] “Semantic Definition Format (SDF) for Data and Interactions of Things”, 12.1.2023, IETF
ASDF WG

[8] “Bluetooth Mesh Models: A Technical Overview” , 27.3.2019, Martin Woolley

https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/
https://www.bluetooth.com/specifications/specs/mesh-model-1-0-1/
https://www.bluetooth.com/bluetooth-resources/bluetooth-mesh-models/
https://www.bluetooth.com/specifications/specs/mesh-device-properties-2/
https://www.bluetooth.com/wp-content/uploads/2020/09/MshWP_Lighting_v1.0.pdf
https://www.bluetooth.com/wp-content/uploads/2020/09/MshWP_Lighting_v1.0.pdf
https://datatracker.ietf.org/doc/draft-laari-asdf-relation
https://datatracker.ietf.org/doc/draft-ietf-asdf-sdf/
https://www.bluetooth.com/bluetooth-resources/bluetooth-mesh-models/

[9] “A Developer’s Guide to Bluetooth Technology”, 10.8.2016, Martin Woolley

9 Appendixes

9.1 Appendix A: Property states and characteristics

In this Appendix, we list the device property states and the corresponding characteristics that

are needed for the Mesh models.

9.1.1 Property states

These device property states are defined in the Mesh Device Properties specification to be

used by some of the SIG Mesh models:

• Light Control Time Occupancy Delay

• Light Control Time Fade On

• Light Control Time Run On

• Light Control Time Fade

• Light Control Time Prolong

• Light Control Time Fade Standby Auto

• Light Control Time Fade Standby Manual

• Light Control Lightness On

• Light Control Lightness Prolong

• Light Control Lightness Standby

• Light Control Ambient LuxLevel On

• Light Control Ambient LuxLevel Prolong

• Light Control Ambient LuxLevel Standby

• Light Control Regulator Kiu

• Light Control Regulator Kid

• Light Control Regulator Kpu

• Light Control Regulator Kpd

• Light Control Regulator Accuracy

• Motion Sensed

• Time Since Motion Sensed

• People Count

• Presence Detected

• Present Ambient Light Level

9.1.2 Characteristics and conversions to SDF

Each device property is mapped to a certain characteristic from the GATT. The following

characteristics are used by the property states:

• Time Second 16

• Time Millisecond 24

• Perceived Lightness

• Illuminance

https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/
https://www.bluetooth.com/specifications/specs/mesh-device-properties-2/

• Coefficient

• Percentage 8

• Count 16

• Boolean

In the Bluetooth – SDF conversion, these are typically converted using the following

template:

"sdfProperty":

 "<characteric_name_from_BT>": {

 "description": "<description_from_BT>",

 "type": "<type_from_BT_converted>",

 "minimum": <lower_boundary_from_BT>,

 "maximum": <upper_boundary_from_BT>

 }

}

For some property states, the raw value is not directly used, but the characteristic contains

values that are used to calculate the actual value. In SDF, these values would be listed in the

mapping file, accompanying the model file. Bluetooth specification provides a way to

construct ‘Representative values’ for different uses using the following formula.

R = C * M * 10d * 2b, where

R = Represented value

C = raw value

M = Multiplier

d = decimal exponent

b = binary exponent

In the following all the characteristics that are needed in the Mesh models are listed and the

corresponding values for calculating the representative value are shown when applicable:

Time Millisecond 24

This 24-bit field represents a period of time with a resolution of 1 millisecond.

M = 1, d = -3, b = 0

Time Second 16

This 16-bit field represents time value with a unit of 1 second.

Perceived Lightness

This represents the perceived lightness of a light.

M = 1, d = 0, b = 0

Illuminance

This represents a measure of illuminance.

M = 1, d = -2, b = 0

Coefficient

This is a generic coefficient value.

Percentage 8

This is an 8-bit value representing a percentage.

M = 1, d = 0, b = -1

Count 16

General 16-bit count value

M = 1, d = 0, b = 0

Boolean

This defines True or False for an item. In Bluetooth, this is defined to be 0 or 1 and for

translation, this must be specified either separately, or then there must be an unambiguous

way to determine it from the source file and convert it to SDF boolean.

9.2 Appendix B: Generic OnOff Server Mesh Model YAML description

model:

 identifier: org.bluetooth.meshmodel.generic_onoff_server

 name: Generic OnOff Server

 description: |-

 This is a generic onoff server, root model.

 states:

 - name: Generic OnOff

 description: |-

 This defines on-off state, boolean

 type: uint8

 values:

 - value: '0'

 description: Off

 - value: '1'

 description: On

 messages:

 - message: Generic OnOff Get

 description: |-

 Return the current GenericOnOff state value

 fields:

 - field: Response

 direction: out

 outdata: Generic OnOffStatus

 - message: Generic OnOff Set

 description: |-

 Set OnOff status, send acknowledgement

 fields:

 - field: OnOff

 direction: in

 type: uint8

 size: 1

 description: |-

 The target value of the Generic OnOff state: 0 = off, 1 = on

 - field: TID

 direction: in

 type: uint8

 size: 1

 description: |-

 Transaction identifier

 - field: Transition Time

 direction: in

 type: uint8

 size: 1

 description: |-

 Transition Time, see section 3.1.3 (Mesh Model specification)

 - field: Delay

 direction: in

 type: uint8

 size: 1

 description: |-

 Message execution delay in 5 milliseconds steps)

 - field: Response

 direction: out

 outdata: Generic OnOffStatus

 - message: Generic OnOff Set Unacknowledged

 description: |-

 Set OnOff status, do not acknowledge

 fields:

 - field: OnOff

 direction: in

 type: uint8

 size: 1

 description: |-

 The target value of the Generic OnOff state: 0 = off, 1 = on

 - field: TID

 direction: in

 type: uint8

 size: 1

 description: |-

 Transaction identifier

 - field: Transition Time

 direction: in

 type: uint8

 size: 1

 description: |-

 Transition Time, see section 3.1.3 (Mesh Model specification)

 - field: Delay

 direction: in

 type: uint8

 size: 1

 description: |-

 Message execution delay in 5 milliseconds steps)

 - message: Generic OnOffStatus

 description: Send out the status of the Generic OnOff Server

 fields:

 - field: Present OnOff

 direction: out

 type: uint8

 size: 1

 description: |-

 The present value of the Generic OnOff state

 - field: Target OnOff

 direction: out

 type: uint8

 size: 1

 description: |-

 The target value of the Generic OnOff state (optional)

 - field: Remaining Time

 direction: out

 type: uint8

 size: 1

 description: |-

 Format defined in section 3.1.3. of the Mesh Model

specification

9.3 Appendix C: Generic OnOff Server converted to SDF

This appendix shows the result of the automatic conversion from the YAML file shown in

Section 9.2. to SDF using the tool that we have developed.

{

 "info": {

 "title": "Bluetooth Generic OnOff Server"

 },

 "namespace": {

 "ext": "http://example.com/default"

 },

 "defaultNamespace": "ext",

 "sdfObject": {

 "Generic OnOff Server": {

 "description": "This is a generic onoff server, root model.",

 "sdfProperty": {

 "Generic OnOff": {

 "description": "This defines on-off state, boolean",

 "type": "boolean"

 }

 },

 "sdfAction": {

 "Generic OnOff Get": {

 "description": "Return the current GenericOnOff state value",

 "sdfOutputData": "#/sdfData/Generic_OnOffStatus"

 },

 "Generic OnOff Set": {

 "description": "Set OnOff status, send acknowledgement",

 "sdfInputData": "#/sdfData/Generic_OnOff_Set",

 "sdfOutputData": "#/sdfData/Generic_OnOffStatus"

 },

 "Generic OnOff Set Unacknowledged": {

 "description": "Set OnOff status, do not acknowledge",

 "sdfInputData": "#/sdfData/Generic_OnOff_Set_Unacknowledged"

 },

 "Generic OnOffStatus": {

 "description": "Send out the status of the Generic OnOff

 Server",

 "sdfOutputData": "#/sdfData/Generic_OnOffStatus"

 }

 },

 "sdfData": {

 "Generic_OnOff_Set": {

 "type": "object",

 "properties": {

 "OnOff": {

 "description": "The target value of the Generic OnOff

 state: 0 = off, 1 = on, boolean",

 "type": "boolean"

 },

 "TID": {

 "description": "Transaction identifier",

 "minimum": 0,

 "maximum": 255

 },

 "Transition Time": {

 "description": "Transition Time, see section 3.1.3 (Mesh

 Model specification)",

 "minimum": 0,

 "maximum": 255

 },

 "Delay": {

 "description": "Message execution delay in 5 milliseconds

 steps)",

 "minimum": 0,

 "maximum": 255

 }

 }

 },

 "Generic_OnOff_Set_Unacknowledged": {

 "type": "object",

 "properties": {

 "OnOff": {

 "description": "The target value of the Generic OnOff

 state: 0 = off, 1 = on, boolean",

 "type": "boolean"

 },

 "TID": {

 "description": "Transaction identifier",

 "minimum": 0,

 "maximum": 255

 },

 "Transition Time": {

 "description": "Transition Time, see section 3.1.3 (Mesh

 Model specification)",

 "minimum": 0,

 "maximum": 255

 },

 "Delay": {

 "description": "Message execution delay in 5 milliseconds

 steps)",

 "minimum": 0,

 "maximum": 255

 }

 }

 },

 "Generic_OnOffStatus": {

 "type": "object",

 "properties": {

 "Present OnOff": {

 "description": "The present value of the Generic OnOff

 state: 0 = off, 1 = on, boolean",

 "type": "boolean"

 },

 "Target OnOff": {

 "description": "The target value of the Generic OnOff state

 (optional), 0 = off, 1 = on, boolean",

 "type": "boolean"

 },

 "Remaining Time": {

 "description": "Format defined in section 3.1.3. of the

 Mesh Model specifiation",

 "type": "integer",

 "minimum": 0,

 "maximum": 255

 }

 }

 }

 }

 }

 }

}

9.4 Appendix D: Light Lightness Server SDF representation

This is a Light Lightness Server Mesh Model converted to SDF manually from the Mesh

Model, and Mesh Profile specifications. Note that there may be errors and the mappings on

each field may change in the future.

{

 "info": {

 "title": "Light Lightness Server (0x1300)",

 },

 "namespace": {

 "bt": "https://example.com/BTmeshmodels"

 },

 "defaultNamespace": "bt",

 "sdfObject": {

 "lightLightnessServer": {

 "label": "lightLignessServer",

 "description": "The Light Lightness Server model extends the

Generic Power OnOff Server model and the Generic Level Server model",

 "sdfProperty": {

 "LightLightnessActual": {

 "label": "Light Lightness Actual",

 "description": "The Light Lightness Actual state represents the

lightness of a light on a perceptually uniform lightness scale. This is

bound to Generic Level and Generic OnOff (BT specification)",

 "type": "integer",

 "minimum": 0,

 "maximum": 65535

 },

 "LightLightnessLinear": {

 "label": "Light Lightness Linear",

 "description": "The Light Lightness Linear state represents the

lightness of a light on a linear scale. The state is bound to the Light

Lightness Actual state.",

 "type": "integer",

 "minimum": 0,

 "maximum": 65535

 },

 "LightLightnessLast": {

 "label": "Light Lightness Last",

 "description": "The purpose of the Light Lightness Last state

is to store the last known non-zero value of the Light Lightness Actual

state, which is a result of a completed transactional change of the

state. ",

 "type": "integer",

 "minimum": 1,

 "maximum": 65535

 },

 "LightLightnessDefault": {

 "label": "Light Lightness Default",

 "description": "The purpose of the Light Lightness Default

state is to determine the lightness level of an element when powered up

and when the Generic OnPowerUp state bound to the Light Lightness

composite state is set to 0x01 (Default).",

 "type": "integer",

 "minimum": 0,

 "maximum": 65535

 },

 "LightLightnessRangeMinimum": {

 "label": "Light Lightness Range",

 "description": "Minimum value for the Lighting value range",

 "type": "integer",

 "minimum": 1,

 "maximum": 65535

 },

 "LightLightnessRangeMaximum": {

 "label": "Light Lightness Range",

 "description": "Maximum value for the Lighting value range",

 "type": "integer",

 "minimum": 1,

 "maximum": 65535

 },

 "PublishAddress": {

 "label": "Publish Address",

 "description": "Model Publish composite state: The Publish

Address state determines the destination address in messages sent by a

model. ",

 "type": "string"

 },

 "PublishPeriod": {

 "label": "Publish period",

 "description": "Model Publish composite state: The Publish

Period state determines the interval at which status messages are

published by a model.",

 "type": "integer",

 "minimum": 0,

 "maximum": 63

 },

 "PublishAppkeyIndex": {

 "label": "Publish Appkey Index",

 "description": "Model Publish composite state: The Publish

AppKey Index state is the global AppKey Index of the application key used

in messages sent by a model.",

 "type": "integer"

 },

 "PublishFriendshipCredentialsFlag": {

 "label": "Publish Friendship Credentials Flag",

 "description": "Model Publish composite state: The Publish

Friendship Credential Flag is a 1-bit state controlling the credentials

used to publish messages from a model. 0: Master security material used,

1: Friendship security material used. ",

 "type": "integer",

 "minimum": 0,

 "maximum": 1

 },

 "PublishTTL": {

 "label": "Publish TTL",

 "description": "Model Publish composite state: The Publish TTL

state determines the TTL value for outgoing messages published by the

mode",

 "type": "integer",

 "sdfChoice": {

 "The Publish TTL value": {

 "value": {

 "minimum": 0,

 "maximum": 127

 },

 "prohibited": {

 "minimum": 128,

 "maximum": 254

 },

 "Use Default TTL": {"const": 255}

 }

 }

 },

 "PublishRetransmitCount": {

 "label": "Publish Retransmit Count",

 "description": "Model Publish composite state: The Publish

Retransmit Count state is a 3-bit value controlling the number of times

that a message published by a model will be retransmitted",

 "type": "integer",

 "minimum": 0,

 "maximum": 7

 },

 "PublishRetransmitIntervalSteps": {

 "label": "Publish Retransmit Interval Steps",

 "description": "Model Publish composite state: The Publish

Retransmit Interval Steps state is a 5-bit value controlling the interval

between retransmissions of a message that is published by a model.",

 "type": "integer",

 "minimum": 0,

 "maximum": 31

 }

 },

 "sdfAction": {

 "LightLightnessGet": {

 "label": "Light Lightness Get",

 "description": "Get the value"

 },

 "LightLightnessSet": {

 "label": "Light Lightness Set",

 "description": "Set the value"

 },

 "LightLightnessSetUnacknowledged": {

 "label": "Light Lightness Set Unacknowledged",

 "description": "Set the value, do not send ack"

 },

 ...

 },

 "GenericOnOff": {

 "label": "Generic OnOff",

 "description": "Generic OnOff Server, extended by Light Lightness

Server",

 "sdfRef": "bt:#/GenericOnOffServer"

 },

 "GenericOnPowerUp": {

 "label": "Generic OnPowerUp",

 "description": "Generic OnPowerUp Server, extended by Light

Lightness Server",

 "sdfRef": "bt:#/GenericOnPowerUpServer"

 },

 "GenericLevel": {

 "label": "Generic Level",

 "description": "Generic Level Server, extended by Light Lightness

Server",

 "sdfRef": "bt:#/GenericLevel"

 }

 }

}

9.5 Appendix E: SDF skeletons for Light LC Server and Light LC Setup Server

 {

 "info": {

 "title": "Light LC Server (0x130F)"

 },

 "namespace": {

 "bt": "https://example.com/bluetoothmeshmodels"

 },

 "defaultNamespace": "bt",

 "sdfObject": {

 "LightLCServer": {

 "LightLightnessServer": {

 "description": "Extending the Light Lightness Server",

 "sdfRef": "bt:/LightLightnessServer"

 },

 "sdfProperty": {

 "LightLCMode": {},

 "LightLCOccupancyMode": {},

 "LightLCLightOnOff": {},

 "LightLCOccupancy": {},

 "LightLCAmbientLuxLevel": {}

 },

 "sdfAction": {

 "GenericOnOffGet": {},

 "GenericOnOffSet": {},

 "LightLCModeGet": {},

 "LightLCModeSet": {},

 "LightLCOMGet": {},

 "LightLCOMSet": {},

 "LightLCLightOnOffGet": {},

 "LightLCLightOnOffSet": {},

 "SensorStatus": {}

 }

 }

 }

Figure 13 Light LC Server, SDF skeleton

{

 "info": {

 "title": "Light LC Setup Server (0x1310)"

 },

 "namespace": {

 "bt": "https://example.com/bluetoothmeshmodels"

 },

 "defaultNamespace": "bt",

 "sdfObject": {

 "LightLCServer": {

 "description": "Extending LightLCServer",

 "sdfRef": "bt:#/LightLCServer"

 },

 "sdfProperty": {

 "LightLCTimeOccupancyDelay": {},

 "LightLCTimeFadeOn": {},

 "LightLCTimeRunOn": {},

 "LightLCTimeFade": {},

 "LightLCTimeProlong": {},

 "LightLCTimeFadeStandbyAuto": {},

 "LightLCTimeFadeStandbyManual": {},

 "LightLCLightnessOn": {},

 "LightLCLightnessProlong": {},

 "LightLCLightnessStandby": {},

 "LightLCAmbientLuxLevelOn": {},

 "LightLCAmbientLuxLevelProlong": {},

 "LightLCAmbientLuxLevelStandby": {},

 "LightLCRegulatorKiu": {},

 "LightLCRegulatorKid": {},

 "LightLCRegulatorKpu": {},

 "LightLCRegulatorKpd": {},

 "LightLCRegulatorAccuracy": {}

 },

 "sdfAction": {

 "LightLCPropertyGet": {},

 "LightLCPropertySet": {},

 "LightLCPropertySetUnacknowledged": {}

 }

 }

Figure 14 Light LC Setup Server, SDF skeleton

	1 Introduction
	2 Bluetooth Node
	2.1 Bluetooth Node definition
	2.2 States
	2.2.1 State information
	2.2.2 Bound States

	2.3 Models

	3 Bluetooth Mesh Node and SDF
	3.1 Semantic Definition Format
	3.2 Mapping a Bluetooth Mesh node to SDF

	4 Example: Light Lightness Server model
	4.1 Generic OnOff Server Model (SIG ID: 0x1000)
	4.2 Light Lightness Server (SIG ID: 0x1300)
	4.3 Light LC Server & Light LC Setup server model

	5 Mapping details
	5.1 Characteristics
	5.2 Extending Model
	5.3 Data types

	6 Implementations
	6.1 Bluetooth to SDF: bt2sdf.js
	6.2 Mesh Model YAML file design
	6.2.1 Entities in the YAML

	6.3 Practical issues

	7 Conclusions and discussion topics
	7.1 Discussion topics

	8 References
	9 Appendixes
	9.1 Appendix A: Property states and characteristics
	9.1.1 Property states
	9.1.2 Characteristics and conversions to SDF

	9.2 Appendix B: Generic OnOff Server Mesh Model YAML description
	9.3 Appendix C: Generic OnOff Server converted to SDF
	9.4 Appendix D: Light Lightness Server SDF representation
	9.5 Appendix E: SDF skeletons for Light LC Server and Light LC Setup Server

