-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinside_index.py
154 lines (116 loc) · 4.2 KB
/
inside_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
from offset_cache import get_offset_cache
class InsideIndex(object):
def get_pairs(self, level, i):
pairs = []
for constituent_num in range(0, level):
l_level = constituent_num
l_i = i - level + constituent_num
r_level = level - 1 - constituent_num
r_i = i
pair = ((l_level, l_i), (r_level, r_i))
pairs.append(pair)
return pairs
def get_all_pairs(self, level, n):
pairs = []
for i in range(level, n):
pairs += self.get_pairs(level, i)
return pairs
class InsideIndexCheck(object):
def __init__(self, index, length, spans, siblings):
sib_map = {}
for x, y, n in siblings:
sib_map[x] = (y, n)
sib_map[y] = (x, n)
check = {}
for sibling, (target, name) in sib_map.items():
xpos = target[0]
xsize = target[1] - target[0]
xlevel = xsize - 1
xoffset = index.get_offset(length)[xlevel]
xidx = xoffset + xpos
spos = sibling[0]
ssize = sibling[1] - sibling[0]
slevel = ssize - 1
soffset = index.get_offset(length)[slevel]
sidx = soffset + spos
check[(xidx, sidx)] = True
self.check = check
def is_valid(self, xidx, sidx):
return (xidx, sidx) in self.check
def get_inside_index_unique(length, level, offset_cache=None, device=None):
if offset_cache is None:
offset_cache = get_offset_cache(length)
index = InsideIndex()
pairs = index.get_all_pairs(level, length)
L = length - level
n_constituents = len(pairs) // L
idx_set = set()
for i in range(n_constituents):
lvl_l = i
lvl_r = level - i - 1
lstart, lend = 0, L
rstart, rend = length - L - lvl_r, length - lvl_r
if lvl_l < 0:
lvl_l = length + lvl_l
if lvl_r < 0:
lvl_r = length + lvl_r
for pos in range(lstart, lend):
offset = offset_cache[lvl_l]
idx = offset + pos
idx_set.add(idx)
for pos in range(rstart, rend):
offset = offset_cache[lvl_r]
idx = offset + pos
idx_set.add(idx)
idx_lst = torch.tensor(list(idx_set), dtype=torch.int64, device=device).flatten()
return idx_lst
def get_inside_components(length, level, offset_cache=None):
if offset_cache is None:
offset_cache = get_offset_cache(length)
index = InsideIndex()
pairs = index.get_all_pairs(level, length)
L = length - level
n_constituents = len(pairs) // L
output = []
for i in range(n_constituents):
index_l, index_r = [], []
span_x, span_l, span_r = [], [], []
l_level = i
r_level = level - l_level - 1
l_start = 0
l_end = L
r_start = length - L - r_level
r_end = length - r_level
if l_level < 0:
l_level = length + l_level
if r_level < 0:
r_level = length + r_level
# The span being targeted.
for pos in range(l_start, l_end):
span_x.append((level, pos))
# The left child.
for pos in range(l_start, l_end):
offset = offset_cache[l_level]
idx = offset + pos
index_l.append(idx)
span_l.append((l_level, pos))
# The right child.
for pos in range(r_start, r_end):
offset = offset_cache[r_level]
idx = offset + pos
index_r.append(idx)
span_r.append((r_level, pos))
output.append((index_l, index_r, span_x, span_l, span_r))
return output
def get_inside_index(length, level, offset_cache=None, device=None):
components = get_inside_components(length, level, offset_cache)
idx_l, idx_r = [], []
for i, (index_l, index_r, _, _, _) in enumerate(components):
idx_l.append(index_l)
idx_r.append(index_r)
idx_l = torch.tensor(idx_l, dtype=torch.int64, device=device
).transpose(0, 1).contiguous().flatten()
idx_r = torch.tensor(idx_r, dtype=torch.int64, device=device
).transpose(0, 1).contiguous().flatten()
return idx_l, idx_r