-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_logger.py
126 lines (94 loc) · 3.29 KB
/
experiment_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import collections
import errno
import logging
import os
import time
import numpy as np
LOGGING_NAMESPACE = 'diora'
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
def configure_experiment(experiment_path):
mkdir_p(experiment_path)
log_file = os.path.join(experiment_path, 'experiment.log')
configure_logger(log_file)
def configure_logger(log_file):
"""
Simple logging configuration.
"""
# Create logger.
logger = logging.getLogger(LOGGING_NAMESPACE)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(message)s')
# Log to console.
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
def get_logger():
return logging.getLogger(LOGGING_NAMESPACE)
class Gauge(object):
def __init__(self):
self.d = collections.defaultdict(list)
def update(self, k, v):
if isinstance(v, (list, tuple)):
for vv in v:
self.update(k, vv)
else:
self.d[k].append(v)
def mean(self, k, retain=False):
v = np.mean(self.d[k])
if not retain:
del self.d[k]
return v
def get(self, k, retain=False):
v = self.d[k]
if not retain:
del self.d[k]
return v
def clear(self):
keys = list(self.d.keys())
for k in keys:
del self.d[k]
class ExperimentLogger(object):
def __init__(self):
super(ExperimentLogger, self).__init__()
self.logger = get_logger()
self.g = Gauge()
def record(self, result):
batch_size, length = result['batch_size'], result['length']
self.g.update('length', [length] * batch_size)
for k, v in result['metrics'].items():
assert not isinstance(v, (list, tuple)), 'Does not support lists.'
self.g.update(k, [v] * batch_size)
def log_batch(self, epoch, step, batch_idx):
logger = self.logger
# Length Distribution.
lengths = self.g.get('length')
length_counts = collections.Counter(lengths)
length_counts_str = ' '.join(['{}:{}'.format(k, v) for k, v in sorted(length_counts.items(), key=lambda x: x[0])])
average_length = np.mean(lengths)
# Metrics.
keys = list(self.g.d.keys())
metrics = {k: self.g.mean(k) for k in keys}
metric_log_prefix = 'Epoch/Step/Batch={}/{}/{}'.format(epoch, step, batch_idx)
metric_log_body = ' '.join(['{}={:.3f}'.format(k, v) for k, v in metrics.items()])
metric_log_str = '{} {}'.format(metric_log_prefix, metric_log_body)
# Log.
logger.info(metric_log_str)
logger.info('Average-Length={}'.format(average_length))
logger.info('Length-Distribution={}'.format(length_counts_str))
self.g.clear()
return metrics
def log_epoch(self, epoch, step):
logger = self.logger
logger.info('Epoch/Step={}/{} (End-Of-Epoch)'.format(epoch, step))
def log_eval(self, loss, metric):
logger = self.logger
logger.info('Eval Loss={} Metric={}.'.format(loss, metric))