-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
3449 lines (2875 loc) · 243 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\def\module{M3P20 Geometry I: Algebraic Curves}
\def\lecturer{Dr Mattia Talpo}
\def\term{Autumn 2018}
\def\cover{
$$
\begin{tikzpicture}[scale=0.5]
\draw (-3, 0) circle (2);
\draw [dotted] (-1, 0) arc (0:180:2 and 0.5);
\draw [dotted, thick] (-1, 0) arc (0:-180:2 and 0.5);
\fill (-4, 1) circle (0.1) node[above]{\tiny $ 0 $};
\fill (-2, 1) circle (0.1) node[above]{\tiny $ 1 $};
\draw [dashed] (-4, 1) to (-2, 1);
\fill (-4, -1) circle (0.1) node[below]{\tiny $ \infty $};
\fill (-2, -1) circle (0.1) node[below]{\tiny $ \lambda $};
\draw [dashed] (-4, -1) to (-2, -1);
\draw (3, 0) circle (2);
\draw [dotted] (1, 0) arc (180:0:2 and 0.5);
\draw [dotted, thick] (1, 0) arc (-180:0:2 and 0.5);
\fill (2, 1) circle (0.1) node[above]{\tiny $ 1 $};
\fill (4, 1) circle (0.1) node[above]{\tiny $ 0 $};
\draw [dashed] (2, 1) to (4, 1);
\fill (2, -1) circle (0.1) node[below]{\tiny $ \lambda $};
\fill (4, -1) circle (0.1) node[below]{\tiny $ \infty $};
\draw [dashed] (2, -1) to (4, -1);
\end{tikzpicture}
$$
$$ \Downarrow $$
$$
\begin{tikzpicture}[scale=0.5]
\draw (-3, 0) circle (2);
\draw [dotted] (-1, 0) arc (0:180:2 and 0.5);
\draw [dotted, thick] (-1, 0) arc (0:-180:2 and 0.5);
\fill (-4, 1) circle (0.1) node[above]{\tiny $ 0 $};
\fill (-2, 1) circle (0.1) node[above]{\tiny $ 1 $};
\draw [fill=lightgray, thick] (-3, 1) ellipse (1 and 0.25);
\fill (-4, -1) circle (0.1) node[below]{\tiny $ \infty $};
\fill (-2, -1) circle (0.1) node[below]{\tiny $ \lambda $};
\draw [fill=lightgray, thick] (-3, -1) ellipse (1 and 0.25);
\draw (3, 0) circle (2);
\draw [dotted] (1, 0) arc (180:0:2 and 0.5);
\draw [dotted, thick] (1, 0) arc (-180:0:2 and 0.5);
\fill (2, 1) circle (0.1) node[above]{\tiny $ 1 $};
\fill (4, 1) circle (0.1) node[above]{\tiny $ 0 $};
\draw [fill=lightgray, thick] (3, 1) ellipse (1 and 0.25);
\fill (2, -1) circle (0.1) node[below]{\tiny $ \lambda $};
\fill (4, -1) circle (0.1) node[below]{\tiny $ \infty $};
\draw [fill=lightgray, thick] (3, -1) ellipse (1 and 0.25);
\end{tikzpicture}
$$
$$ \Downarrow $$
$$
\begin{tikzpicture}[scale=0.5]
\draw [fill=lightgray, thick] (-3, 2) ellipse (1 and 0.25);
\fill (-4, 2) circle (0.1) node[left]{\tiny $ 0 $};
\fill (-2, 2) circle (0.1) node[right]{\tiny $ 1 $};
\draw [dashed] (-2, -2) arc (0:180:1 and 0.25);
\draw [thick] (-2, -2) arc (0:-180:1 and 0.25);
\fill [lightgray, opacity=0.5] (-3, -2) ellipse (1 and 0.25);
\fill (-4, -2) circle (0.1) node[left]{\tiny $ \infty $};
\fill (-2, -2) circle (0.1) node[right]{\tiny $ \lambda $};
\draw (-4, -2) to (-4, 2);
\draw (-2, -2) to (-2, 2);
\draw [dotted] (-2, 0) arc (0:180:1 and 0.25);
\draw [dotted, thick] (-2, 0) arc (0:-180:1 and 0.25);
\draw [fill=lightgray, thick] (3, 2) ellipse (1 and 0.25);
\fill (2, 2) circle (0.1) node[left]{\tiny $ 1 $};
\fill (4, 2) circle (0.1) node[right]{\tiny $ 0 $};
\draw [dashed] (2, -2) arc (180:0:1 and 0.25);
\draw [thick] (2, -2) arc (-180:0:1 and 0.25);
\fill [lightgray, opacity=0.5] (3, -2) ellipse (1 and 0.25);
\fill (2, -2) circle (0.1) node[left]{\tiny $ \lambda $};
\fill (4, -2) circle (0.1) node[right]{\tiny $ \infty $};
\draw (2, -2) to (2, 2);
\draw (4, -2) to (4, 2);
\draw [dotted] (2, 0) arc (180:0:1 and 0.25);
\draw [dotted, thick] (2, 0) arc (-180:0:1 and 0.25);
\end{tikzpicture}
$$
$$ \Downarrow $$
$$
\begin{tikzpicture}[scale=0.5]
\draw [fill=lightgray, thick] (-2, 1.5) ellipse (0.25 and 0.5);
\fill (-2, 2) circle (0.1) node[right]{\tiny $ 0 $};
\fill (-2, 1) circle (0.1) node[right]{\tiny $ 1 $};
\draw [fill=lightgray, thick] (-2, -1.5) ellipse (0.25 and 0.5);
\fill (-2, -1) circle (0.1) node[right]{\tiny $ \lambda $};
\fill (-2, -2) circle (0.1) node[right]{\tiny $ \infty $};
\draw (-2, 2) arc (90:270:2 and 2);
\draw (-2, 1) arc (90:270:1 and 1);
\draw [dotted] (-3, 0) arc (0:180:0.5 and 0.25);
\draw [dotted, thick] (-3, 0) arc (0:-180:0.5 and 0.25);
\draw [dashed] (2, 2) arc (90:-90:0.25 and 0.5);
\draw [thick] (2, 2) arc (90:270:0.25 and 0.5);
\fill [lightgray, opacity=0.5] (2, 1.5) ellipse (0.25 and 0.5);
\fill (2, 2) circle (0.1) node[left]{\tiny $ 0 $};
\fill (2, 1) circle (0.1) node[left]{\tiny $ 1 $};
\draw [dashed] (2, -2) arc (-90:90:0.25 and 0.5);
\draw [thick] (2, -2) arc (270:90:0.25 and 0.5);
\fill [lightgray, opacity=0.5] (2, -1.5) ellipse (0.25 and 0.5);
\fill (2, -1) circle (0.1) node[left]{\tiny $ \lambda $};
\fill (2, -2) circle (0.1) node[left]{\tiny $ \infty $};
\draw (2, 2) arc (90:-90:2 and 2);
\draw (2, 1) arc (90:-90:1 and 1);
\draw [dotted] (3, 0) arc (180:0:0.5 and 0.25);
\draw [dotted, thick] (3, 0) arc (-180:0:0.5 and 0.25);
\end{tikzpicture}
$$
$$ \Downarrow $$
$$
\begin{tikzpicture}[scale=0.5]
\draw (0, 0) circle (2);
\draw (0, 0) circle (1);
\draw [dashed] (0, 2) arc (90:-90:0.25 and 0.5);
\draw [dashed, thick] (0, 2) arc (90:270:0.25 and 0.5);
\fill (0, 2) circle (0.1) node[above]{\tiny $ 0 $};
\fill (0, 1) circle (0.1) node[below]{\tiny $ 1 $};
\draw [dashed] (0, -2) arc (-90:90:0.25 and 0.5);
\draw [dashed, thick] (0, -2) arc (270:90:0.25 and 0.5);
\fill (0, -1) circle (0.1) node[above]{\tiny $ \lambda $};
\fill (0, -2) circle (0.1) node[below]{\tiny $ \infty $};
\draw [dotted] (-1, 0) arc (0:180:0.5 and 0.25);
\draw [dotted, thick] (-1, 0) arc (0:-180:0.5 and 0.25);
\draw [dotted] (1, 0) arc (180:0:0.5 and 0.25);
\draw [dotted, thick] (1, 0) arc (-180:0:0.5 and 0.25);
\end{tikzpicture}
$$
}
\def\syllabus{Affine plane algebraic curves. Projective space. Plane projective curves. Projectivisation. Points at infinity. Singularities. Smoothness. Intersections of plane curves. Resultants. Multiplicities. B\'ezout's theorem. Conics. Cubic curves. Riemann surfaces. Genus. Ramification. The Riemann-Hurwitz formula. The degree-genus formula.}
\def\thm{section}
\input{header}
\begin{document}
\input{cover}
\setcounter{section}{0}
\section{Introduction}
\lecture{1}{Monday}{08/10/18}
This course is intended as a first course in algebraic geometry. It will focus on one-dimensional algebraic varieties. The following are the reference books for the course.
\begin{itemize}
\item F Kirwan, Complex algebraic curves, 1992
\item W Fulton, Algebraic curves, an introduction to algebraic geometry, 1969
\end{itemize}
\begin{note*}
The official notes are integrated in these unofficial notes.
\end{note*}
Geometry is the study of shapes in suitable spaces, such as sets of points on the real line $ \RR $, lines and circles in $ \RR^2 $, spheres in higher dimensional Euclidean spaces $ \RR^n $, etc. One way to think about shapes is to see them as the locus of zeroes defined by
$$ \cbr{\br{x_1, \dots, x_n} \in \RR^n \st f\br{x_1, \dots, x_n} = 0} \subseteq \RR^n, $$
for some suitable function $ f $.
\begin{example}
\label{eg:1.1}
\hfill
\begin{itemize}
\item Circles with centre at $ \br{0, 0} $ in $ \RR^2 $ are
$$ \cbr{f_1\br{x, y} = x^2 + y^2 - R^2 = 0}, \qquad R \in \RR. $$
\item The unit square with vertices at $ \cbr{\br{\pm 1, 0}, \br{0, \pm 1}} $ in $ \RR^2 $ is
$$ \cbr{f_2\br{x, y} = \abs{x} + \abs{y} - 1 = 0}. $$
\item Spheres in $ \RR^n $ are
$$ \cbr{f_3\br{x_1, \dots, x_n} = x_1^2 + \dots + x_n^2 - R^2 = 0}, \qquad R \in \RR. $$
\end{itemize}
\end{example}
\begin{remark}
Note that every subset $ S \subseteq \RR^n $ is the zero set of some function, by just defining
$$ \function[\chi_S]{\RR^n}{\RR}{x}{
\begin{cases}
0 & x \in S \\
1 & x \notin S
\end{cases}
}. $$
\end{remark}
The class of functions used to define our shapes has great consequences on their geometry. In Example \ref{eg:1.1}, $ f_1 $ is a polynomial so that it is differentiable and also $ \C^\infty $, while $ f_2 $ is continuous but not differentiable at $ \cbr{\br{0, \pm 1}, \br{\pm 1, 0}} $, the vertices of the square. The function $ \chi_S $ is not even continuous, unless $ S $ is empty, or the whole $ \RR^n $. As these examples illustrate, an underlying principle is the equivalence between the regularity properties of $ f $ and the regularity properties of $ \cbr{f = 0} $. \textbf{Algebraic geometry} is the area of mathematics that studies the shapes in spaces defined by polynomial equations using algebra. Such shapes are called \textbf{algebraic varieties}. Their geometric properties are intimately related to the algebraic properties of the defining polynomial equations.
\begin{example}
\hfill
\begin{itemize}
\item Let $ f\br{x} $ be a polynomial. Then the zero set $ \cbr{f\br{x} = 0} \subseteq \RR $ is a finite set of points in $ \RR $, and every finite set of points arises in this manner.
\item The circle $ \cbr{x^2 + y^2 - 1 = 0} \subseteq \RR^2 $ is an algebraic variety.
\item Spheres in higher dimensions are algebraic varieties, defined by the equation $ \cbr{x_1^2 + \dots + x_n^2 = r^2} \subseteq \RR^n $, where $ r \in \RR_{\ge 0} $ is the radius.
\end{itemize}
\end{example}
\begin{exercise**}
\hfill
\begin{itemize}
\item Is $ \ZZ \subseteq \RR $ an algebraic variety?
\item Is the unit square an algebraic variety?
\end{itemize}
\end{exercise**}
\pagebreak
\begin{definition}
Let $ K $ be a field, such as $ K = \QQ, \RR, \CC $. For $ \alpha = \br{\alpha_1, \dots, \alpha_n} \in \NN^n $ a multi-index, denote a \textbf{monomial} by
$$ x^\alpha = x_1^{\alpha_1} \dots x_n^{\alpha_n}, \qquad \abs{\alpha} = \sum_{i = 1}^n \alpha_i. $$
A \textbf{polynomial} of degree $ d $ in $ n $ variables with coefficients in $ K $ is a finite sum
$$ P\br{x_1, \dots, x_n} = \sum_{\alpha \in \NN^n} a_\alpha x^\alpha, \qquad a_\alpha \in K, $$
where $ a_\alpha = 0 $ for all $ \abs{\alpha} > d $ and $ a_\alpha \ne 0 $ for some $ \alpha $ with $ \abs{\alpha} = d $. The set of polynomials of arbitrary degree in $ n $ variables with coefficients in $ K $ is denoted $ K\sbr{x_1, \dots, x_n} $.
\end{definition}
\begin{example*}
Let $ n = 3 $. Then
$$ P\br{x_1, x_2, x_3} = 3 + x_1^2x_2 + x_3^{10}, \qquad \alpha = \br{0, 0, 0}, \br{2, 1, 0}, \br{0, 0, 10} $$
has degree ten.
\end{example*}
\begin{exercise**}
\hfill
\begin{itemize}
\item Show that $ K\sbr{x_1, \dots, x_n} $ is a ring, and that if $ P $ and $ Q $ are polynomials of degrees $ p $ and $ q $ respectively, then the degree of $ \lambda P + \mu Q $ for $ \lambda, \mu \in K $ is at most $ \max\cbr{p, q} $. Give an example of polynomials $ P, Q \in K\sbr{x} $ such that
$$ \deg \br{P + Q} < \max\cbr{\deg P, \deg Q}. $$
\item Show that $ \br{P \cdot Q}\br{x_1, \dots, x_n} = P\br{x_1, \dots, x_n}Q\br{x_1, \dots, x_n} $ is a polynomial $ P \cdot Q \in K\sbr{x_1, \dots, x_n} $ with $ \deg PQ = \deg P + \deg Q $. What if $ P = 0 $? What is $ \deg 0 $?
\end{itemize}
\end{exercise**}
\begin{definition}
An \textbf{affine plane curve} defined over $ K $ is
$$ C = \cbr{\br{x, y} \in K^2 \st P\br{x, y} = 0} \subseteq K^2, $$
where $ P \in K\sbr{x, y} $ is non-constant. More generally, an \textbf{algebraic variety} $ V \subseteq K^n $ is a subset of $ K^n $ defined as the locus
$$ \cbr{f_1 = \dots = f_k = 0} \subseteq K^n, $$
where $ f_1, \dots, f_k \in K\sbr{x_1, \dots, x_n} $ are polynomials in $ n $ variables with coefficients in $ K $.
\end{definition}
\begin{example}
\hfill
\begin{itemize}
\item If we allow constant polynomials, then for $ P = 0 $ we get $ C = K^2 $, and if $ P $ is a non-zero constant, then $ C $ is the empty set. Neither of those really look like curves.
\item Let $ a, b, c \in \RR $ with $ \br{a, b} \ne \br{0, 0} $. The curve
$$ \cbr{\br{x, y} \in \RR^2 \st ax + by + c = 0} $$
is a line.
\item Let $ a, b \in \RR^* = \RR \setminus \cbr{0} $. The curve
$$ \cbr{\br{x, y} \in \RR^2 \st \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - 1 = 0} $$
is an ellipse.
\item Let $ a, b \in \RR^* = \RR \setminus \cbr{0} $. The curve
$$ \cbr{\br{x, y} \in \RR^2 \st \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} - 1 = 0} $$
is a hyperbola.
\item Spheres, and quadrics such as ellipsoids, paraboloids, and hyperboloids in $ \RR^3 $ are all defined via a single polynomial equation of degree two. A line in $ \RR^3 $ can be defined by two equations in degree one.
\end{itemize}
\end{example}
\pagebreak
The following is the first property of algebraic curves.
\begin{lemma}
\label{lem:1.7}
The union of two affine plane curves is again an affine plane curve.
\end{lemma}
\begin{proof}
Let $ f_1, f_2 \in K\sbr{x, y} $ and let
$$ C_1 = \cbr{\br{x, y} \in K^2 \st f_1\br{x, y} = 0}, \qquad C_2 = \cbr{\br{x, y} \in K^2 \st f_2\br{x, y} = 0}. $$
Then $ f_1 \cdot f_2 \in K\sbr{x, y} $ is a polynomial and
$$ C_1 \cup C_2 = \cbr{\br{x, y} \in K^2 \st \br{f_1 \cdot f_2}\br{x, y} = 0}, $$
so that $ C_1 \cup C_2 $ is an affine plane curve.
\end{proof}
\begin{exercise**}
Write down an equation for the plane curve that is the union of the lines through any two vertices of the unit square.
\end{exercise**}
Recall the following.
\begin{definition}
A polynomial $ P \in K\sbr{x_1, \dots, x_n} $ is \textbf{reducible} over $ K $ if there are non-constant polynomials $ Q, R \in K\sbr{x_1, \dots, x_n} $ such that $ P = Q \cdot R $. A polynomial $ P $ is \textbf{irreducible} if it is not reducible. Recall that a polynomial $ P $ is called non-constant if $ \deg P > 0 $.
\end{definition}
\begin{example*}
$ x_1x_2 $ is reducible, and $ x_1 + x_2 $ is irreducible.
\end{example*}
\begin{remark}
Recall also that every polynomial $ P \in K\sbr{x_1, \dots, x_n} $ can be written as a product of irreducible factors
$$ P = f_1 \dots f_k, $$
in an essentially unique way up to multiplication by constants. We have
$$ \cbr{P = 0} = \cbr{f_1 = 0} \cup \dots \cup \cbr{f_k = 0} \subseteq K^n, $$
so in particular, for $ n = 2 $, every algebraic curve is a union of algebraic curves defined by irreducible polynomials.
\end{remark}
In the course, we will consider questions such as the following.
\begin{itemize}
\item When do polynomials $ f, g \in K\sbr{x, y} $ define the same affine plane curve?
\item What can be said about the intersection $ \cbr{f = 0} \cap \cbr{g = 0} \subseteq K^2 $?
\end{itemize}
Very different questions can be approached through algebraic curves. For example, we can study integer solutions to some Diophantine equations.
\begin{example}
The unit circle is the curve
$$ C = \cbr{x^2 + y^2 = 1} \subseteq \RR^2. $$
Several parametrisations are known, such as
$$ \function{\intco{0, 2\pi}}{\RR^2}{t}{\br{\cos t, \sin t}}. $$
We can write down another parametrisation of $ C $ by considering lines through the point $ P = \br{-1, 0} $, using a stereographic projection. A line through $ P $ with slope $ t \in \RR $ has equation
$$ L_t = \cbr{y = t\br{x + 1}} \subseteq \RR^2 $$
and meets $ C $ in two points, $ P $ and $ P_t = \br{x\br{t}, y\br{t}} $. We can determine the coordinate of $ P_t $ by solving the system
$$ L_t \cap C =
\begin{cases}
y = t\br{x + 1} \\
x^2 + y^2 = 1
\end{cases}.
$$
\pagebreak
Replacing the value of $ y $ given by the first equation into the second yields two solutions for $ x\br{t} $. The first one is $ x = -1 $ and corresponds to the point $ P = \br{-1, 0} $. The second is $ \br{x\br{t}, y\br{t}} $, where
\begin{equation}
\label{eq:1}
x\br{t} = \dfrac{1 - t^2}{1 + t^2}, \qquad y\br{t} = \dfrac{2t}{1 + t^2}.
\end{equation}
Note that when $ t \to \infty $, $ \br{x\br{t}, y\br{t}} \to \br{-1, 0} $, so that $ t \mapsto \br{x\br{t}, y\br{t}} $ is a parametrisation of $ C $ that identifies it with $ \RR \cup \cbr{\infty} $. The advantage of this parametrisation is that it is given by rational functions, that is $ x\br{t} $ and $ y\br{t} $ are of the form $ t \mapsto p\br{t} / q\br{t} $, where $ p $ and $ q $ are polynomials. One can use this parametrisation to get the general solution of the equation
\begin{equation}
\label{eq:2}
x^2 + y^2 = z^2
\end{equation}
for $ x, y, z \in \ZZ $ coprime. If $ t = p / q \in \QQ $, where $ p, q \in \ZZ $ are coprime, then $ x\br{t}, y\br{t} \in \QQ $ in $ \br{\ref{eq:1}} $ becomes
$$ x\br{t} = \dfrac{p^2 - q^2}{p^2 + q^2}, \qquad y\br{t} = \dfrac{2pq}{p + q^2}. $$
If
$$ x = p^2 - q^2, \qquad y = 2pq, \qquad z = p^2 + q^2, $$
$ x, y, z \in \ZZ $ satisfy $ \br{\ref{eq:2}} $. They are coprime precisely when $ p $ and $ q $ are coprime and not both odd. When $ p $ and $ q $ are coprime and both odd, then
$$ x = \dfrac{p^2 - q^2}{2}, \qquad y = pq, \qquad \dfrac{p^2 + q^2}{2} $$
satisfy $ \br{\ref{eq:2}} $. Conversely, this is the general form of solutions in $ \br{\ref{eq:2}} $. Indeed, given $ x, y, z \in \ZZ $ coprime that satisfy $ \br{\ref{eq:2}} $, $ z \ne 0 $ and
$$ \dfrac{x^2}{z^2} + \dfrac{y^2}{z^2} = 1, $$
so that $ \br{x / z, y / z} \in \CC $ and if $ \br{x, y, z} \ne \br{-1, 0, 1} $, there is $ t \in \RR $ such that
$$ \br{\dfrac{x}{z}, \dfrac{y}{z}} = \br{x\br{t}, y\br{t}}. $$
But then since $ x / z, y / z \in \QQ $, we can take $ t \in \QQ $ and $ x, y, z $ have the form above.
\end{example}
\lecture{2}{Thursday}{11/10/18}
\begin{definition}
Let $ f \in \RR\sbr{x, y} $ and let $ C = \cbr{f = 0} $. A \textbf{rational point} of $ C $ is a point $ \br{x, y} \in C $, that is $ f\br{x, y} = 0 $, such that $ x, y \in \QQ $.
\end{definition}
\begin{example}
There are infinitely many rational points on the circle
$$ \cbr{x^2 + y^2 = 1} \subseteq \RR^2, $$
which can be described explicitly, and can be used to solve
$$ a^2 + b^2 = c^2, \qquad a, b, c \in \ZZ, $$
a problem in number theory. Take $ n \ge 3 $ and consider
$$ C = \cbr{x^n + y^n - 1 = 0}. $$
What are the rational points of $ C $? Write
$$ x = \dfrac{a}{c}, \qquad y = \dfrac{b}{c}, \qquad a, b, c \in \ZZ, \qquad c \ne 0. $$
Then
$$ \br{x, y} \in C \qquad \iff \qquad a^n + b^n = c^n. $$
Fermat's last theorem by Wiles then states that there exists no solution with $ a, b \ne 0 $.
\end{example}
\pagebreak
\section{Complex plane curves}
Let $ P \in \RR\sbr{x, y} $ be a polynomial with coefficients in $ \RR $. A priori, it is natural to study the real plane curve
$$ C_\RR = \cbr{\br{x, y} \in \RR^2 \st P\br{x, y} = 0}. $$
However, $ P $ can also been seen as a polynomial with coefficients in $ \CC $, and it will often be simpler to study the complex plane curve
$$ C_\CC = \cbr{\br{x, y} \in \CC^2 \st P\br{x, y} = 0}. $$
We first explain some of the properties of algebraic curves that we would like to hold and explain why these properties do not necessarily hold for real plane curves, and some unpleasant things happen.
\begin{fact**}
Many real curves are so degenerate that they do not even have points, that is $ C_\RR = \emptyset $. If $ C_\RR \ne \emptyset $, the dimension of $ C_\RR $, that is whether it is a union of points or a genuine curve, is difficult to determine.
\end{fact**}
\begin{example}
\label{eg:2.1}
Let $ t \in \RR $ and consider
$$ f_t\br{x, y} = x^2 + y^2 - t, $$
and the real plane curve
$$ C_t = \cbr{f_t\br{x, y} = 0} \subseteq \RR^2. $$
\begin{itemize}
\item If $ t > 0 $, $ C_t $ is a circle with radius $ \sqrt{t} $.
\item If $ t = 0 $, $ C_0 = \cbr{\br{0, 0}} $.
\item If $ t < 0 $, $ C_t = \emptyset $.
\end{itemize}
\end{example}
\begin{fact**}
In general, it is not clear when two polynomials $ f, g \in \RR\sbr{x, y} $ define the same real plane curve, that is when
$$ \cbr{\br{x, y} \in \RR^2 \st f\br{x, y} = 0} = \cbr{\br{x, y} \in \RR^2 \st g\br{x, y} = 0}. $$
\end{fact**}
\begin{example}
\label{eg:2.2}
Let $ f $ and $ g $ denote the polynomials
$$ f\br{x, y} = x^2y + y^2 + x^3 + x, \qquad g\br{x, y} = x^2 + 2xy + y^2. $$
Then, since $ f\br{x, y} = \br{x + y} \cdot \br{x^2 + 1} $ and $ g\br{x, y} = \br{x + y}^2 $,
$$ \cbr{\br{x, y} \in \RR^2 \st f\br{x, y} = 0} = \cbr{\br{x, y} \in \RR^2 \st g\br{x, y} = 0}. $$
\end{example}
\begin{fact**}
In general, it is hard to predict when a curve intersects a fixed line, or more generally when two real curves intersect.
\end{fact**}
\begin{example}
In the notation of Example \ref{eg:2.1}, let
$$ C = C_1 = \cbr{\br{x, y} \in \RR^2 \st x^2 + y^2 - 1} \subseteq \RR^2 $$
be the unit circle. Consider the line
$$ L = \cbr{ax + by + c = 0}, \qquad \br{a, b} \ne \br{0, 0}. $$
Then, depending on $ \br{a, b, c} \in \RR^3 $, $ L \cap C $ consists of two points, one point, or is empty.
\end{example}
Most of these difficulties disappear when working with curves $ C_\CC \subseteq \CC^2 $, essentially because $ \CC $ is algebraically closed, in other words the following theorem holds.
\begin{theorem}[Fundamental theorem of algebra]
\label{thm:2.4}
Let $ P \in \CC\sbr{x} $ be a non-constant polynomial. Then $ P $ has at least one complex root, that is there exists $ \alpha \in \CC $ such that $ P\br{\alpha} = 0 $.
\end{theorem}
\pagebreak
This, first of all, has the following consequence.
\begin{proposition}
Let $ P \in \CC\sbr{x, y} $ be a non-constant polynomial. Then the algebraic curve
$$ C = \cbr{\br{x, y} \in \CC^2 \st P\br{x, y} = 0} $$
contains infinitely many points.
\end{proposition}
\begin{proof}
Because $ P $ is not constant, one of $ x $ and $ y $ will show up in a monomial of $ P $. Assume that it is $ x $. Otherwise, the same argument swapping $ x $ and $ y $. By grouping together monomials with the same degree in $ x $, we can write $ P\br{x, y} $ as
$$ P\br{x, y} = f_0\br{y} + \dots + x^d \cdot f_d\br{y}, \qquad d \ge 1, $$
thanks to the assumption above, and $ f_0\br{y}, \dots, f_d\br{y} $ are polynomials in $ y $ alone, with $ f_d\br{y} \ne 0 $. Now note that since $ P\br{x, y} \ne 0 $, there will be infinitely many values $ y_0 \in \CC $ of $ y $ for which $ P\br{x, y_0} \ne 0 $. Indeed, the equation $ P\br{x, y} = 0 $ has finitely many solutions, and $ \CC $ has infinitely many elements. For any one of those values $ y_0 \in C $, the polynomial of $ x $ alone given by $ P\br{x, y_0} \in \CC\sbr{x} $ is non-constant and has at least a root, by the fundamental theorem of algebra. Call this root $ x_0 = \alpha\br{y_0} \in \CC $. Then the points $ \br{x_0, y_0} $ are infinitely many points, all belonging to the curve $ C = \cbr{P = 0} $. They are all distinct, because the second coordinate is always different.
\end{proof}
\begin{example}
Let $ a, b, c \in \CC $ with $ \br{a, b} \ne \br{0, 0} $, and let
$$ f\br{x, y} = ax + by + c. $$
If $ a \ne 0 $, for each $ y \in \CC $, there is precisely one solution of $ f\br{x, y} = 0 $, namely
$$ x = -\dfrac{b}{a}y - \dfrac{c}{a}. $$
Thus there is a one-to-one correspondence
$$ C = \cbr{f = 0} \subseteq \CC^2 \qquad \leftrightsquigarrow \qquad \CC, $$
that is a plane when seen as an $ \RR $-vector space $ \CC \cong \RR^2 $. We will call $ C $ a \textbf{complex line}.
\end{example}
\begin{remark}
It is difficult to draw complex curves. Our intuition is for real vector spaces, and this makes complex curves hard to visualise. They are objects of real dimension two in $ \CC^2 \cong \RR^4 $, a four-dimensional real vector space.
\end{remark}
\begin{example}
Let
$$ f\br{x, y} = x^2 + y^2 = \br{x + iy} \cdot \br{x - iy}. $$
Then, as in Lemma \ref{lem:1.7}, $ C = \cbr{f = 0} \subseteq \CC^2 $ is the union of the two complex lines
$$ \cbr{x + iy = 0}, \qquad \cbr{x - iy = 0}. $$
When seen as $ \RR $-vector spaces, these two planes meet at exactly one point corresponding to $ \br{0, 0} \in \RR^2 \subseteq \CC^2 $, the only real point of $ C $. It is difficult to imagine two planes meeting in one point, because our intuition relies on the three-dimensional space $ \RR^3 $, while $ \CC^2 \cong \RR^4 $.
\end{example}
Describing intersections is also easier.
\begin{example}
Consider
$$ C = \cbr{x^2 + y^2 - 1 = 0} \subseteq \CC^2, \qquad L = \cbr{ax + by + c = 0} \subseteq \CC^2. $$
If $ b \ne 0 $, we determine the intersection $ C \cap L $ by solving the linear system
$$
\begin{cases}
x^2 + y^2 = 1, \\
y = -\dfrac{a}{b}x - \dfrac{c}{b}
\end{cases}.
$$
Unless $ a^2 = -b^2 $ and $ c = 0 $, there are one or two solutions. Again, it is hard to imagine a two-dimensional real surface which meets a real plane in two points.
\end{example}
\pagebreak
We now turn to the question of recognising when two polynomials define the same plane curve. Here again, working in $ \CC $ is a simplification.
\begin{theorem}[Consequence of Hilbert's Nullstellensatz]
\label{thm:2.10}
Let $ f, g \in \CC\sbr{x, y} $ be two polynomials. Then
$$ \cbr{\br{x, y} \in \CC^2 \st f\br{x, y} = 0} = \cbr{\br{x, y} \in \CC^2 \st g\br{x, y} = 0} $$
if and only if there exist
$$ P_1, \dots, P_k \in \CC\sbr{x, y}, \qquad a_1, \dots, a_k, b_1, \dots, b_k \in \ZZ_{> 0}, \qquad \lambda_1, \lambda_2 \in \CC^*, $$
such that
\begin{equation}
\label{eq:3}
\begin{cases}
f\br{x, y} = \lambda_1 P_1^{a_1} \dots P_k^{a_k} \\
g\br{x, y} = \lambda_2 P_1^{b_1} \dots P_k^{b_k}
\end{cases}.
\end{equation}
\end{theorem}
\lecture{3}{Friday}{12/10/18}
\begin{proof}
Assume that $ \br{\ref{eq:3}} $ holds. Then by the proof of Lemma \ref{lem:1.7},
$$ \cbr{f = 0} = \cbr{P_1^{a_1} = 0} \cup \dots \cup \cbr{P_k^{a_k} = 0} = \cbr{P_1 = 0} \cup \dots \cup \cbr{P_k = 0}, $$
because if $ \alpha \in \CC $ is such that $ \alpha^n = 0 $, then $ \alpha = 0 $. The same holds for $ \cbr{g = 0} $. Therefore $ \cbr{f = 0} = \cbr{g = 0} $. The second half of the proof needs tools of commutative algebra, and is omitted.
\end{proof}
Thus, the relation between the geometric shape $ C = \cbr{f = 0} $ in $ \CC^2 $ and the polynomial $ f \in \CC\sbr{x, y} $ is more transparent than in $ \RR^2 $.
\begin{remark}
In fact, the statement of Theorem \ref{thm:2.10} is not true over $ \RR $, as Example \ref{eg:2.2} shows. Even better, we can just take
$$ f\br{x, y} = x^2 + 1, \qquad g\br{x, y} = 1 $$
as polynomials in $ \RR\sbr{x, y} $. Their zero locus is
$$ \cbr{f = 0} = \cbr{g = 0} = \emptyset $$
in both cases, but $ f $ and $ g $ cannot be written in the form guaranteed by $ \br{\ref{eq:3}} $.
\end{remark}
We will always work in $ \CC $. Let us introduce some important notions for the study of polynomials.
\begin{definition}
A polynomial $ f \in K\sbr{x, y} $ has \textbf{no repeated factors} over $ K $ if it cannot be written as a product of the form
$$ f\br{x, y} = g\br{x, y}^2 \cdot h\br{x, y}, \qquad g, h \in K\sbr{x, y} $$
where $ g $ is non-constant. Equivalently,
$$ f = P_1 \cdot \dots \cdot P_k, $$
where $ P_1, \dots, P_k $ are distinct irreducible polynomials.
\end{definition}
\begin{exercise**}
Prove the equivalence of the two different definitions.
\end{exercise**}
\begin{corollary}
Let $ f, g \in \CC\sbr{x, y} $ be polynomials with non-repeated factors. Then $ f $ and $ g $ define the same complex plane curve $ \cbr{f = 0} = \cbr{g = 0} $ if and only if there is a non-zero constant $ \lambda \in \CC^* $ such that $ f = \lambda g $.
\end{corollary}
\begin{proof}
Easy consequence of Theorem \ref{thm:2.10}.
\end{proof}
\begin{remark}
Note that we do not lose anything by only working with polynomials with no repeated factors. Indeed, if
$$ f = P_1^{a_1} \dots P_k^{a_k}, \qquad a_i \in \NN $$
is a factorisation of $ f $ in distinct irreducible polynomials $ P_i $ for all $ i $, and we set
$$ g = P_1 \cdot \dots \cdot P_k, $$
then we have $ \cbr{f = 0} = \cbr{g = 0} $, and $ g $ has no repeated factors.
\end{remark}
\pagebreak
Let $ C \subseteq \CC^2 $ be a complex plane curve. We have proved that, up to multiplication by $ \lambda \in \CC^* $, there is a unique non-constant polynomial $ f \in \CC\sbr{x, y} $ with no repeated factors such that $ C = \cbr{f = 0} $. It makes sense to define the following.
\begin{definition}
The \textbf{degree} of an affine curve $ C \subseteq \CC^2 $ is the degree of any polynomial with no repeated factors $ f $ which defines $ C $, such that $ C = \cbr{f = 0} $, that is $ \deg C = \deg f $.
\end{definition}
\begin{example}
\hfill
\begin{itemize}
\item A complex line has always degree one, since they are defined by a linear polynomial.
\item A conic, a curve defined by a polynomial $ f\br{x, y} $ of degree two, has degree two, unless it is a double line, that is
$$ f\br{x, y} = L\br{x, y}^2, $$
for some linear polynomial $ L\br{x, y} $. In that case, it has degree equal to $ \deg L = 1 $.
\item If $ P \in \CC\sbr{x, y} $ is an irreducible polynomial of degree two and $ L \in \CC\sbr{x, y} $ is a polynomial of degree one, then the curve $ \cbr{P \cdot L = 0} $ has degree three. For example,
$$ \cbr{x^2y + y^2 + x + 1 = 0} $$
has degree three, assuming it has no repeated factors.
\end{itemize}
\end{example}
Unless mentioned otherwise, in the first few weeks, we will assume that polynomials have no repeated factors.
\begin{definition}
Let $ f_1, f_2 \in \CC\sbr{x, y} $ be polynomials with no repeated factors and let
$$ C_1 = \cbr{f = 0}, \qquad C_2 = \cbr{g = 0} $$
be the associated complex curves. The curves $ C_1 $ and $ C_2 $ have \textbf{no common component} if there is no non-constant polynomial $ P $ that divides both $ f $ and $ g $.
\end{definition}
We can read off whether $ C_1 $ and $ C_2 $ have common components from the factorisation of $ f_1 $ and $ f_2 $ in irreducible polynomials. If
$$ f = P_1^{a_1} \dots P_k^{a_k}, \qquad g = Q_1^{b_1} \dots Q_k^{b_k}, $$
where all $ P_i $ and $ Q_i $ are irreducible, and $ P_i \ne P_j $ and $ Q_i \ne Q_j $ for $ i \ne j $, then $ C_1 $ and $ C_2 $ have no common component if and only if $ \lambda P_i \ne Q_j $ for all $ i $ and $ j $ and $ \lambda \in \CC^* $.
\begin{remark}
The terminology comes from the fact that if $ f = P_1 \dots P_k $ as above, the algebraic curve $ \cbr{P_i = 0} $ is said to be \textbf{irreducible}, and it is called an \textbf{irreducible component} of the algebraic curve $ \cbr{f = 0} $, which is the union of all its components.
\end{remark}
\begin{exercise**}
Show that if $ C_1 $ and $ C_2 $ have no common component, then
$$ \deg C_1 \cup C_2 = \deg C_1 + \deg C_2. $$
\end{exercise**}
\begin{exercise**}
Let $ L $ and $ L' $ be the lines
$$ L = \cbr{ax + by + c = 0} \subseteq \CC^2, \qquad L' = \cbr{a'x + b'y + c' = 0} \subseteq \CC^2. $$
\begin{itemize}
\item Show that $ L $ and $ L' $ meet at exactly one point if and only if $ ab' - a'b \ne 0 $.
\item Show that $ L = L' $ if and only if there exists $ \lambda \in \CC $ such that $ \lambda \ne 0 $ and
$$ a' = \lambda a, \qquad b' = \lambda b, \qquad c' = \lambda c. $$
\end{itemize}
\end{exercise**}
\pagebreak
\begin{remark}[First aid topology]
\label{rem:2.19}
\hfill
\begin{itemize}
\item A \textbf{topological space} $ X $ is a set, equipped with a collection of \textbf{open subsets} $ \cbr{U_i \subseteq X} $, such that
\begin{itemize}
\item $ \emptyset $ and $ X $ are open,
\item any union $ \bigcup_{i \in I} U_i $ of open sets $ U_i $ is open, and
\item any finite intersection $ \bigcap_{i = 1}^k U_i $ of open sets $ U_i $ is open.
\end{itemize}
\item A \textbf{metric space} $ X $, such as $ \br{\CC^n, \norm{.}} $, is a topological space. The open sets are given by arbitrary unions and finite intersections of the familiar \textbf{open balls}
$$ \B\br{x, \epsilon} = \cbr{z \in X \st \norm{z - x}} < \epsilon. $$
\item A subset $ X \subseteq Y $ of a topological space $ Y $ inherits a topology from $ Y $. The open sets of $ X $ are the sets $ X \cap U $, where $ U \subseteq Y $ is an open set of $ Y $.
\item $ X $ is \textbf{compact} if for all open covering
$$ X = \bigcup_{i \in I} U_i, $$
where $ U_i $ are open, there exists a finite subcovering
$$ X = \bigcup_{i_1, \dots, i_k} U_{i_j}, \qquad \cbr{i_1, \dots, i_k} \subseteq I. $$
\item The \textbf{Heine-Borel theorem} states that a subset $ X $ of $ \RR^n $ or of $ \CC^m $ is compact if and only if $ X $ is \textbf{closed}, that is its complement is open, and \textbf{bounded}, for the usual norm.
\item A closed subset of a compact space is compact.
\item A map $ f : X \to Y $ between topological spaces is \textbf{continuous} if and only if $ f^{-1}\br{U} $ is open, in $ X $, whenever $ U \subseteq Y $ is open. It follows that $ f^{-1}\br{F} $ is closed whenever $ F \subseteq Y $ is closed. In particular, if $ f \in \CC\sbr{x_1, \dots, x_n} $ is a polynomial, $ f $ defines a map $ f : \CC^n \to \CC $ that is continuous, and
$$ f^{-1}\br{\cbr{0}} = \cbr{f = 0} \subseteq \CC^n $$
is closed because $ \cbr{0} $ is a closed subset of $ \CC $.
\end{itemize}
\end{remark}
In particular, $ \CC^2 $ is a topological space with the Euclidean distance in $ \RR^4 $, and if
$$ C = \cbr{f = 0} \subseteq \CC^2 $$
is an affine plane curve, then $ C $ is a topological space that inherits a topology as a subset of $ \CC^2 \cong \RR^4 $. The open sets of $ C $ are $ U \cap C $ where $ U \subseteq \CC^2 $ is open. So algebraic curves have a natural topology.
\begin{lemma}
Let $ C \subseteq \CC^2 $ be an affine plane curve, then $ C $ is not compact.
\end{lemma}
\begin{proof}
Since $ f $ is a continuous function $ \CC^2 \to \CC $, $ C = \cbr{f = 0} = f^{-1}\br{\cbr{0}} $, and $ \cbr{0} $ is closed in $ \CC $, $ C $ is closed in $ \CC^2 $. We show that $ C \subseteq \CC^2 $ is not bounded. Assume that it is, then there is a constant $ M > 0 $ such that $ C \subseteq \B\br{0, M} $, where the open ball is
$$ \B\br{0, M} = \cbr{\br{x, y} \in \CC^2 \st \abs{x}^2 + \abs{y}^2 < M}. $$
Want to show that some points in $ \CC $ are outside this open ball. Let $ x_0 \in \CC $ be such that $ \abs{x_0} > M $ and assume we can arrange for $ g = f\br{x_0, y} $ to be a non-constant polynomial of $ y $. What if $ f\br{x, y} $ happens to be a polynomial of $ x $ alone, so that this cannot be arranged? \footnote{Exercise} By the fundamental theorem of algebra, $ g $ has a root $ y_0 \in \CC $ and the point $ \br{x_0, y_0} \in C $. This is a contradiction, as $ \br{x_0, y_0} \notin \B\br{0, M} $.
\end{proof}
\pagebreak
\section{Projective space}
\lecture{4}{Monday}{15/10/18}
Recall that it is difficult to determine when two affine plane curves $ C, C' \in \CC^2 $ intersect, and some curves do not in fact intersect, even over $ \CC $. We want to fix that, and the key is adding points at infinity.
\begin{example}
\hfill
\begin{itemize}
\item Consider two distinct lines
$$ L_1 = \cbr{ax + by + c = 0}, \qquad L_2 = \cbr{a'x + b'y + c' = 0}. $$
Then $ L_1 $ and $ L_2 $ meet at exactly one point if and only if
$$ \det \twobytwo{a}{b}{a'}{b'} \ne 0. $$
But we can pretend that parallel lines meet at a point at infinity corresponding to the direction vector.
\item Consider the asymptotic curve and line
$$ C = \cbr{xy - 1 = 0}, \qquad L = \cbr{x = 0}. $$
Then $ C $ and $ L $ do not meet, but again we can pretend that they meet at a point at infinity.
\end{itemize}
\end{example}
Informally, a heuristic trick is to introduce a variable $ z $.
\begin{enumerate}
\item Replace $ \br{x, y} \mapsto \br{x / z, y / z} $.
\item Solve $ z = 0 $.
\end{enumerate}
\begin{example}
\hfill
\begin{itemize}
\item Consider the lines
$$ L_1 = \cbr{ax + by + c = 0}, \qquad L_2 = \cbr{a'x + b'y + c' = 0}. $$
Clearly $ L_1 $ and $ L_2 $ do not meet. Let us apply the trick. By $ 1 $ and $ 2 $ we get
$$
\begin{cases}
\dfrac{x}{z} + \dfrac{y}{z} + 1 = 0 \\
\dfrac{x}{z} + \dfrac{y}{z} - 1 = 0
\end{cases}
\qquad \implies \qquad
\begin{cases}
x + y + z = 0 \\
x + y - z = 0
\end{cases}
\qquad \implies \qquad
\begin{cases}
x + y = 0 \\
x + y = 0
\end{cases}.
$$
We get that the point $ \br{1, -1, 0} $ is a common solution. This will be called the point at infinity.
\item Consider the asymptotic curve and line
$$ C = \cbr{xy - 1 = 0}, \qquad L = \cbr{x = 0}. $$
Apply $ 1 $ and $ 2 $ to get
$$
\begin{cases}
xy - z^2 = 0 \\
\dfrac{x}{z} = 0
\end{cases}
\qquad \implies \qquad
\begin{cases}
xy = 0 \\
x = 0
\end{cases}.
$$
We get that $ \br{0, 1, 0} $ is a common solution. Again, this will be called the point at infinity.
\end{itemize}
\end{example}
To make this formal, we introduce the projective plane $ \PP^2 $. We will add points at infinity to $ \CC^2 $, in such a way that asymptotic curves meet at infinity. We will then compactify an affine plane curve $ C $ so that the two compactifications are compatible, that is
$$ \br{C \subseteq \CC^2} \hookrightarrow \br{\overline{C} \subseteq \PP^2}. $$
\pagebreak
\begin{notation}
Fix $ n \ge 0 $ and $ \CC^{n + 1} $. Let $ \underline{0} = \br{0, \dots, 0} \in \CC^{n + 1} $ be the origin of the $ \br{n + 1} $-dimensional complex Euclidean space. We will denote
$$ W = \CC^{n + 1} \setminus \cbr{\underline{0}}, $$
that is a point $ x \in W $ is given by $ x = \br{x_0, \dots, x_n} $ where $ x_0, \dots, x_n \in \CC $ are not all zero. We define the equivalence relation on $ W $, for any $ x, y \in W $ by
$$ x \sim y \qquad \iff \qquad \exists \lambda \in \CC^* = \CC \setminus \cbr{0}, \ x = \lambda y. $$
\end{notation}
\begin{exercise**}
Show that $ \sim $ is an equivalence relation on $ W $.
\end{exercise**}
\begin{notation}
Given $ x \in W $, we denote
$$ \sbr{x} = \cbr{y \in W \st x \sim y}. $$
For simplicity, if $ x = \br{x_0, \dots, x_n} $ we will denote
$$ \sbr{x} = \sbr{x_0, \dots, x_n}, $$
instead of $ x = \sbr{\br{x_0, \dots, x_n}} $.
\end{notation}
\begin{exercise**}
Show that $ \sbr{x} = \sbr{y} $ if and only if $ x \sim y $. Show that if $ y \notin \sbr{x} $ then $ \sbr{x} \cap \sbr{y} = \emptyset $.
\end{exercise**}
\begin{definition}
The \textbf{$ n $-dimensional complex projective space} $ \PP_\CC^n $, or $ \PP^n\br{\CC} $, or simply $ \PP^n $, is defined as the quotient of $ W $ by $ \sim $, that is
$$ \PP_\CC^n = W / \sim = \cbr{\sbr{x} \st x \in W = \CC^{n + 1} \setminus \cbr{\underline{0}}}. $$
The coordinates of $ \PP^n $ are $ \sbr{x} \in \PP^n $ except $ \sbr{0, \dots, 0} $, and
$$ \sbr{\lambda x_0, \dots, \lambda x_n} = \sbr{x_0, \dots, x_n}. $$
In other words, in $ \PP^n $, two points $ \sbr{x_0, \dots, x_n} $ and $ \sbr{y_0, \dots, y_n} $ are the same point if and only if there exists a non-zero constant $ \lambda $ such that
$$ x_0 = \lambda y_0, \qquad \dots, \qquad x_n = \lambda y_n. $$
\end{definition}
\begin{example}
The point $ \sbr{1, 2, i} $ is the same as the point $ \sbr{i, 2i, -1} $.
\end{example}
\begin{exercise**}
Show that there exists a bijection
$$ \PP^n \qquad \leftrightsquigarrow \qquad \cbr{\text{one-dimensional subspaces of} \ \CC^{n + 1}}. $$
In fact, if $ V $ is a finite-dimensional vector space over $ \CC $ without the choice of a basis, we can define the associated projective space $ \PP\br{V} $ as the set of one-dimensional linear subspaces of $ V $.
\end{exercise**}
\begin{example}
For any non-zero $ x \in \CC $ we have $ \sbr{x} = \sbr{1} $. So
$$ \PP^0 = \CC^1 \setminus \cbr{0} / \sim = \cbr{\sbr{1}} $$
is a point.
\end{example}
\begin{notation}
For any $ i = 0, \dots, n $, denote the \textbf{affine chart}
$$ U_i = \cbr{\sbr{x} = \sbr{x_1, \dots, x_n} \in \PP^n \st x_i \ne 0} \subseteq \PP^n. $$
\end{notation}
\begin{lemma}
\label{lem:3.9}
$$ \PP^n = U_0 \cup \dots \cup U_n. $$
\end{lemma}
\begin{proof}
Take $ \sbr{x} = \sbr{x_0, \dots, x_n} \in \PP^n $ then $ x \in W $ and in particular $ x = \br{x_0, \dots, x_n} $ where at least one of the coefficients is non-zero, say $ x_i \ne 0 $. Then $ \sbr{x} \in U_i $. Thus any $ \sbr{x} \in \PP^n $ is contained in the union of $ U_0, \dots, U_n $.
\end{proof}
\pagebreak
\begin{lemma}
\label{lem:3.10}
Pick $ i = 0, \dots, n $. Define
$$ \function[\phi_i]{\CC^n}{U_i}{\br{y_1, \dots, y_n}}{\sbr{y_1, \dots, y_i, 1, y_{i + 1}, \dots, y_n}}. $$
Then $ \phi_i $ is a bijection and its inverse is given by
$$ \function[\psi_i]{U_i}{\CC^n}{\sbr{x_0, \dots, x_n}}{\br{\dfrac{x_0}{x_i}, \dots, \dfrac{x_{i - 1}}{x_i}, \dfrac{x_{i + 1}}{x_i}, \dots, \dfrac{x_n}{x_i}}}. $$
\end{lemma}
\begin{proof}
First note that both $ \phi_i $ and $ \psi_i $ is well-defined, indeed, if $ \br{y_1, \dots, y_n} \in \CC^n $ then
$$ \br{y_1, \dots, y_i, 1, y_{i + 1}, \dots, y_n} \in W $$
and therefore
$$ \sbr{y_1, \dots, y_i, 1, y_{i + 1}, \dots, y_n} \in \PP^n. $$
Similarly, if $ \sbr{x_0, \dots, x_n} = \sbr{x_0', \dots, x_n'} $ then it follows that
$$ \psi_i\sbr{x_0, \dots, x_n} = \psi_i\sbr{x_0', \dots, x_n'}. $$
Thus, it is enough to show that both $ \phi_i \circ \psi_i $ and $ \psi_i \circ \phi_i $ coincide with the identity. We have
$$ \psi_i\br{\phi_i\br{y_1, \dots, y_n}} = \psi_i\sbr{y_1, \dots, y_i, 1, y_{i + 1}, \dots, y_n} = \br{\dfrac{y_1}{1}, \dots, \dfrac{y_i}{1}, \dfrac{y_{i + 1}}{1}, \dots, \dfrac{y_n}{1}} = \br{y_1, \dots, y_n}. $$
Similarly,
$$ \phi_i\br{\psi_i\sbr{x_0, \dots, x_n}} = \phi_i\br{\dfrac{x_0}{x_i}, \dots, \dfrac{x_{i - 1}}{x_i}, \dfrac{x_{i + 1}}{x_i}, \dots, \dfrac{x_n}{x_i}} = \sbr{\dfrac{x_0}{x_i}, \dots, \dfrac{x_{i - 1}}{x_i}, 1, \dfrac{x_{i + 1}}{x_i}, \dots, \dfrac{x_n}{x_i}} = \sbr{x_0, \dots, x_n}. $$
Thus they are inverses.
\end{proof}
\begin{example*}
Let $ n = 2 $ and $ \sbr{x_0, x_1, x_2} \in \PP^2 $. Then
$$ \function[\phi_1]{\CC^2}{U_1}{\br{0, 0}}{\sbr{0, 1, 0}}, \qquad \function[\phi_2]{\CC^2}{U_2}{\br{0, 0}}{\sbr{0, 0, 1}}. $$
\end{example*}
Lemma \ref{lem:3.9} and Lemma \ref{lem:3.10} can be used to define a topology on $ \PP^n $. Let $ U \subseteq \PP^n $, then $ U $ is open if and only if $ \phi_i^{-1}\br{U \cap U_i} \subseteq \CC^n $ is open, in $ U_i \cong \CC^n $, for any $ i = 0, \dots, n $.
\begin{exercise**}
Show that $ U_i \subseteq \PP^n $ is open in $ \PP^n $ for all $ i = 0, \dots, n $.
\end{exercise**}
\begin{exercise**}
\label{ex:11}
We can define another topology on $ \PP^n $ as the quotient topology induced by the map
$$ \function[\pi]{W}{\PP^n}{\br{x_0, \dots, x_n}}{\sbr{x_0, \dots, x_n}}, $$
so a subset $ U \subseteq \PP^n $ is open if and only if its preimage $ \pi^{-1}\br{U} \subseteq W $ is open in $ W $. Show that this indeed defines a topology, and that this topology coincides with the one defined above using the maps $ \phi_i $. Check that with this topology on $ \PP^n $, $ \pi $ is continuous.
\end{exercise**}
\begin{exercise**}
\label{ex:12}
Prove that $ \PP^n $ is compact. A hint is to restrict the projection $ \pi $ of Exercise \ref{ex:11} to the $ \br{n + 1} $-dimensional sphere $ \S^{n + 1} \subseteq W $, and check that this restriction is surjective and continuous. Since $ \S^{n + 1} $ is compact, it follows that $ \PP^n $ is compact as well.
\end{exercise**}
\begin{example}
\hfill
\begin{itemize}
\item $ \PP^1 = \cbr{\sbr{x_0, x_1} \st \br{x_0, x_1} \in \CC^2 \setminus \cbr{\underline{0}}} $ is the union of $ U_0 $ and $ U_1 $. The intersection of $ U_0 $ and $ U_1 $ is
$$ U_0 \cap U_1 = \cbr{\sbr{x_0, x_1} \st x_0 \ne 0, \ x_1 \ne 0}, $$
which can be identified with $ \CC^* = \CC \setminus \cbr{0} $ via the map
$$ \function{U_0 \cap U_1}{\CC^*}{\sbr{x_0, x_1}}{\dfrac{x_1}{x_0}}. $$
\pagebreak
Using this identification and the maps $ \psi_i $, the inclusions $ U_0 \cap U_1 \subseteq U_0 $ and $ U_0 \cap U_1 \subseteq U_1 $ are the maps
$$ \function{\CC^*}{\CC^1}{z}{z}, \qquad \function{\CC^*}{\CC^1}{z}{\dfrac{1}{z}}. $$
Then $ \PP^1 $ is glued together from two copies of $ \CC $ along $ U_0 \cap U_1 $ by these inclusions, so $ \PP^1 = \CC^1 \cup \cbr{\infty} $. Over the real numbers, $ \PP^1\br{\RR} $ is built up in the same way from two copies of $ \RR^1 $, and can be identified with the circle $ \S^1 $.
\item $ \PP^2 = \cbr{\sbr{x_0, x_1, x_2} \st \br{x_0, x_1, x_2} \in \CC^3 \setminus \cbr{\underline{0}}} $ is the union of $ U_0 \cong U_1 \cong U_2 \cong \CC^2 $, and the intersection can be described similarly. At infinity we will have a line.
\item More generally, $ \PP^n $ can be described similarly.
\end{itemize}
\end{example}
In practice, we will view the affine complex plane $ \CC^2 $ as being embedded in $ \PP^2 $ as one of the open sets $ U_i $.
\begin{example*}
We identify $ \br{x, y} \in \CC^2 $ and $ \sbr{x, y, 1} \in \PP^2 $.
\end{example*}
What is the complement of this embedding, that is the points at infinity?
\begin{notation}
For any $ i = 0, \dots, n $, denote
$$ \PPP_i = \cbr{\sbr{x_0, \dots, x_n} \in \PP^n \st x_i = 0} \subseteq \PP^n. $$
\end{notation}
\begin{lemma}
\label{lem:3.13}
For any $ i = 0, \dots, n $, we have $ \PP^n = U_i \sqcup \PPP_i $. Moreover if we define
$$ \function[f_i]{\PP^{n - 1}}{\PPP_i}{\sbr{z_0, \dots, z_{n - 1}}}{\sbr{z_0, \dots, z_{i - 1}, 0, z_i, \dots, z_{n - 1}}}, $$
then $ f_i $ is a bijection.
\end{lemma}
\begin{proof}
Both statements are easy to check. \footnote{Exercise}
\end{proof}
In conclusion, we have that
$$ \PP^n = U_i \sqcup \PPP_i, \qquad U_i \cong \CC^n, \qquad \PPP_i \cong \PP^{n - 1}, $$
so $ \PP^n \cong \CC^n \sqcup \dots \sqcup \CC^0 $. Then $ \PPP_i $ is called the \textbf{hyperplane at infinity}.
\begin{example}
\hfill
\begin{itemize}
\item We have already seen that $ \PP^0 $ is a point.
\item $ \PP^1 \cong \CC^1 \cup \PP^0 $. In other words, $ \PP^1 $ is obtained by adding a point at infinity to the complex line $ \CC $. It is a way to compactify the real plane. If the $ \CC^1 $ above is $ U_0 $, this point at infinity is the origin of the other open subset $ U_1 \cong \CC^1 $. One can show that there is an bijection, which is also a homeomorphism
$$ \function{\PP^1}{\S^2 \subseteq \RR^3}{r}{\dfrac{1}{r}}. $$
$ \PP^1 $ is called the \textbf{projective line}, by problem sheet $ 1 $.
\item $ \PP^2 \cong \CC^2 \cup \PP^1 $. Thus $ \PP^2 $ is obtained by adding a projective \textbf{line at infinity} to the complex plane $ \CC^2 $. Then $ \PP^2 $ is called the \textbf{projective plane}.
\end{itemize}
\end{example}
\begin{note*}
The point at infinity or the line at infinity is not unique. It depends on the choice of the coordinate, and in our settings, it depends on $ i $. In the future, we will often fix $ i $, and this will give us a unique choice of the point or line at infinity.
\end{note*}
\pagebreak
\section{Projective curves}
\lecture{5}{Thursday}{18/10/18}
Recall that an algebraic curve is given by
$$ C = \cbr{f\br{x, y} = 0} \subseteq \CC^2, \qquad f \in \CC\sbr{x, y}. $$
In this section, we want to define projective curves similarly in $ \PP^2 $ and then compactify these affine curves. If we try to define a plane projective curve in the same way as an affine curve, that is as
$$ \cbr{f = 0} \subseteq \PP^2, \qquad f \in \CC\sbr{x_0, x_1, x_2}, $$
the first hurdle we encounter is that $ f $ does not define a function on $ \PP^2 $.
\begin{example}
\hfill
\begin{itemize}
\item Let
$$ f\br{x, y, z} = x^2 + y^2 - z^2. $$
Then $ f\br{1, 1, 1} \ne f\br{2, 2, 2} $, so that $ f $ does not define a function on $ \PP^2 $. It makes no sense to talk about $ f\br{1, 1, 1} $, because in $ \PP^2 $, $ \sbr{1, 1, 1} = \sbr{2, 2, 2} $, so the value would not be well-defined. However, the locus where $ f $ vanishes in this case is well-defined. If $ f\br{x, y, z} = 0 $, then $ f\br{\lambda x, \lambda y, \lambda z} = 0 $ for all $ \lambda \in \CC^* $, so that the subset
$$ \cbr{\sbr{x, y, z} \in \PP^2 \st f\br{x, y, z} = 0} $$
is well-defined.
\item Let
$$ g\br{x_0, x_1, x_2} = x_0^2 + x_1, $$
then $ g\br{i, 1, 0} = 0 $, but $ g\br{2i, 2, 0} \ne 0 $, so that in this case, the vanishing locus
$$ \cbr{\sbr{x_0, x_1, x_2} \in \PP^2 \st g\br{x_0, x_1, x_2} = 0} $$
is not even well-defined.
\end{itemize}
\end{example}
The example shows that if we want to define projective curves as
$$ \cbr{\sbr{x_0, x_1, x_2} \in \PP^2 \st f\br{x_0, x_1, x_2} = 0}, $$
then $ f \in \CC\sbr{x_0, x_1, x_2} $ has to satisfy some additional properties.
\begin{definition}
A polynomial $ f \in K\sbr{x_0, \dots, x_n} $ is \textbf{homogeneous} if all its monomials have the same degree $ d \in \NN $, that is
$$ f\br{x_0, \dots, x_n} = \sum_{\alpha, \ \abs{\alpha} = d} a_\alpha x^\alpha, \qquad \alpha \in \NN^{n + 1}. $$
\end{definition}
\begin{example}
\hfill
\begin{itemize}
\item The polynomial
$$ f\br{x, y, z} = x^2 + y^2 - z^2 $$
is homogeneous of degree two.
\item The polynomial
$$ g\br{x_0, x_1, x_2} = x_0^2 + x_1 $$
is not homogeneous.
\item The polynomial
$$ f\br{x, y} = Ax^3 + Bx^2y + Cxy^2 + Dy^3 $$
is homogeneous of degree three, and all the homogeneous polynomials of degree three in $ x $ and $ y $ can be written in this form.
\item The polynomial
$$ g\br{x, y, z} = x^4 - 2x^2yz + yz^3 $$
is homogeneous of degree four.
\end{itemize}
\end{example}
\pagebreak
\begin{lemma}
\label{lem:4.4}
Let $ P \in \CC\sbr{x_0, \dots, x_n} $ be a polynomial. If $ P $ is homogeneous of degree $ d $, then
$$ P\br{\lambda x_0, \dots, \lambda x_n} = \lambda^dP\br{x_0, \dots, x_n}, \qquad \lambda \in \CC, \qquad \br{x_0, \dots, x_n} \in \CC^{n + 1}. $$
\end{lemma}
\begin{proof}
Let $ P $ be a homogeneous polynomial of degree $ d $. Then
$$ P = M_1 + \dots + M_k, $$
where each $ M_i $ is a monomial of degree $ d $. For each monomial
$$ M = a_\alpha x^\alpha = a_\alpha x_0^{\alpha_0} \dots x_n^{\alpha_n}, \qquad \alpha \in \NN^{n + 1}, \qquad a_\alpha \in \CC $$
of degree $ d $, we have
$$ M\br{\lambda x_0, \dots, \lambda x_n} = a_\alpha\br{\lambda^{\alpha_0}x_0^{\alpha_0}} \dots \br{\lambda^{\alpha_n}x_n^{\alpha_n}} = \lambda^{\sum_{i = 0}^n \alpha_i}a_\alpha x^\alpha = \lambda^da_\alpha x^\alpha = \lambda^dM\br{x_0, \dots, x_n}, $$
because $ \sum_{i = 0}^n \alpha_i = \abs{\alpha} = d $. For the arbitrary homogeneous polynomial $ P $, write $ P = \sum_{i = 1}^k M_i $. Thus
$$ P\br{\lambda x_0, \dots, \lambda x_n} = \sum_{i = 1}^k M_i\br{\lambda x_0, \dots, \lambda x_n} = \lambda^d\sum_{i = 1}^k M_i\br{x_0, \dots, x_n} = \lambda^dP\br{x_0, \dots, x_n}. $$
\end{proof}
\begin{exercise**}
Prove the converse implication of Lemma \ref{lem:4.4}, that is if $ P \in \CC\sbr{x_0, \dots, x_n} $ and
$$ P\br{\lambda x_0, \dots, \lambda x_n} = \lambda^dP\br{x_0, \dots, x_n}, \qquad \lambda \in \CC, \qquad \br{x_0, \dots, x_n} \in \CC^{n + 1}, $$
then $ P $ is homogeneous of degree $ d $.
\end{exercise**}
\begin{proposition}
Let $ P $ be a homogeneous polynomial. Then
$$ \cbr{\sbr{x_0, \dots, x_n} \in \PP^n \st P\br{x_0, \dots, x_n} = 0} $$
is well-defined.
\end{proposition}
\begin{proof}
We have to check that if $ \br{x_0, \dots, x_n} \sim \br{y_0, \dots, y_n} $, $ P\br{x_0, \dots, x_n} = 0 $ if and only if $ P\br{y_0, \dots, y_n} = 0 $. This follows immediately from Lemma \ref{lem:4.4}, because by definition of $ \sim $,
$$ \br{y_0, \dots, y_n} = \br{\lambda x_0, \dots, \lambda x_n}, \qquad \lambda \in \CC^*, $$
so $ P\br{x_0, \dots, x_n} = 0 $ if and only if $ P\br{\lambda x_0, \dots, \lambda x_n} = \lambda^dP\br{x_0, \dots, x_n} = 0 $.
\end{proof}
\begin{notation}
Unless mentioned otherwise, arbitrary polynomials will be denoted $ f, g, h, \dots $, while homogeneous polynomials will be denoted $ P, Q, R, \dots $.
\end{notation}
Let $ P_1, \dots, P_k \in \CC\sbr{x_0, \dots, x_n} $ be homogeneous polynomials. Then the vanishing locus
$$ \cbr{P_1 = \dots = P_k = 0} \subseteq \PP^n $$
is a \textbf{projective variety}. These are the main object of study of algebraic geometry. In this class, we will focus on plane projective curves.
\begin{definition}
A \textbf{complex plane projective algebraic curve} is
$$ C = \cbr{\sbr{x_0, x_1, x_2} \in \PP^2 \st P\br{x_0, x_1, x_2} = 0} \subseteq \PP^2, $$
where $ P $ is a non-constant homogeneous polynomial $ P \in \CC\sbr{x_0, x_1, x_2} $.
\end{definition}
\begin{example}
The hyperplanes at infinity
$$ \PPP_i = \cbr{x_i = 0} \subseteq \PP^2, \qquad i = 0, 1, 2 $$
are projective curves, of degree one.
\end{example}
\begin{definition}
A \textbf{projective line} is a projective curve defined by a homogeneous polynomial $ ax_0 + bx_1 + cx_2 = 0 $ of degree one.
\end{definition}
\pagebreak
We have seen that in the case of affine plane curves $ \cbr{f = 0} \subseteq \CC^2 $, the irreducible factors of the polynomial $ f $ were important when studying curves. The next lemma ensures that the same type of results hold for projective curves.
\begin{lemma}
\label{lem:4.10}
Let $ P \in K\sbr{x_0, \dots, x_n} $ be a non-zero homogeneous polynomial. Assume that
$$ P = Q \cdot R, \qquad Q, R \in K\sbr{x_0, \dots, x_n}. $$
Then the polynomials $ Q $ and $ R $ are homogeneous.
\end{lemma}
\begin{proof}