-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy patheduchat_gradio.py
309 lines (240 loc) · 8.98 KB
/
educhat_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python3
import argparse
import torch
import transformers
from distutils.util import strtobool
from tokenizers import pre_tokenizers
from transformers.generation.utils import logger
import mdtex2html
import gradio as gr
import argparse
import warnings
import torch
logger.setLevel("ERROR")
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore")
def _strtobool(x):
return bool(strtobool(x))
QA_SPECIAL_TOKENS = {
"Question": "<|prompter|>",
"Answer": "<|assistant|>",
"System": "<|system|>",
"StartPrefix": "<|prefix_begin|>",
"EndPrefix": "<|prefix_end|>",
"InnerThought": "<|inner_thoughts|>",
"EndOfThought": "<eot>"
}
def format_pairs(pairs, eos_token, add_initial_reply_token=False):
conversations = [
"{}{}{}".format(
QA_SPECIAL_TOKENS["Question" if i % 2 == 0 else "Answer"], pairs[i], eos_token)
for i in range(len(pairs))
]
if add_initial_reply_token:
conversations.append(QA_SPECIAL_TOKENS["Answer"])
return conversations
def format_system_prefix(prefix, eos_token):
return "{}{}{}".format(
QA_SPECIAL_TOKENS["System"],
prefix,
eos_token,
)
def get_specific_model(
model_name, seq2seqmodel=False, without_head=False, cache_dir=".cache", quantization=False, **kwargs
):
# encoder-decoder support for Flan-T5 like models
# for now, we can use an argument but in the future,
# we can automate this
model = transformers.LlamaForCausalLM.from_pretrained(model_name, **kwargs)
return model
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--max_new_tokens", type=int, default=200)
parser.add_argument("--top_k", type=int, default=40)
parser.add_argument("--do_sample", type=_strtobool, default=True)
# parser.add_argument("--system_prefix", type=str, default=None)
parser.add_argument("--per-digit-tokens", action="store_true")
args = parser.parse_args()
# # 开放问答
system_prefix = \
"<|system|>"'''你是一个人工智能助手,名字叫EduChat。
- EduChat是一个由华东师范大学开发的对话式语言模型。
EduChat的工具
- Web search: Disable.
- Calculators: Disable.
EduChat的能力
- Inner Thought: Disable.
对话主题
- General: Enable.
- Psychology: Disable.
- Socrates: Disable.'''"</s>"
# # 启发式教学
# system_prefix = \
# "<|system|>"'''你是一个人工智能助手,名字叫EduChat。
# - EduChat是一个由华东师范大学开发的对话式语言模型。
# EduChat的工具
# - Web search: Disable.
# - Calculators: Disable.
# EduChat的能力
# - Inner Thought: Disable.
# 对话主题
# - General: Disable.
# - Psychology: Disable.
# - Socrates: Enable.'''"</s>"
# 情感支持
# system_prefix = \
# "<|system|>"'''你是一个人工智能助手,名字叫EduChat。
# - EduChat是一个由华东师范大学开发的对话式语言模型。
# EduChat的工具
# - Web search: Disable.
# - Calculators: Disable.
# EduChat的能力
# - Inner Thought: Disable.
# 对话主题
# - General: Disable.
# - Psychology: Enable.
# - Socrates: Disable.'''"</s>"
print('Loading model...')
model = get_specific_model(args.model_path)
model.half().cuda()
model.gradient_checkpointing_enable() # reduce number of stored activations
print('Loading tokenizer...')
tokenizer = transformers.LlamaTokenizer.from_pretrained(args.model_path)
tokenizer.add_special_tokens(
{
"pad_token": "</s>",
"eos_token": "</s>",
"sep_token": "<s>",
}
)
additional_special_tokens = (
[]
if "additional_special_tokens" not in tokenizer.special_tokens_map
else tokenizer.special_tokens_map["additional_special_tokens"]
)
additional_special_tokens = list(
set(additional_special_tokens + list(QA_SPECIAL_TOKENS.values())))
print("additional_special_tokens:", additional_special_tokens)
tokenizer.add_special_tokens(
{"additional_special_tokens": additional_special_tokens})
if args.per_digit_tokens:
tokenizer._tokenizer.pre_processor = pre_tokenizers.Digits(True)
human_token_id = tokenizer.additional_special_tokens_ids[
tokenizer.additional_special_tokens.index(QA_SPECIAL_TOKENS["Question"])
]
print('Type "quit" to exit')
print("Press Control + C to restart conversation (spam to exit)")
conversation_history = []
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_length, top_p, temperature, history):
query = parse_text(input)
chatbot.append((query, ""))
conversation_history = []
for i, (old_query, response) in enumerate(history):
conversation_history.append(old_query)
conversation_history.append(response)
conversation_history.append(query)
query_str = "".join(format_pairs(conversation_history,
tokenizer.eos_token, add_initial_reply_token=True))
if system_prefix:
query_str = system_prefix + query_str
print("query:", query_str)
batch = tokenizer.encode(
query_str,
return_tensors="pt",
)
with torch.cuda.amp.autocast():
out = model.generate(
input_ids=batch.to(model.device),
# The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
max_length=max_length,
top_k=args.top_k,
top_p=top_p,
temperature=temperature,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
if out[0][-1] == tokenizer.eos_token_id:
response = out[0][:-1]
else:
response = out[0]
response = tokenizer.decode(out[0]).split(QA_SPECIAL_TOKENS["Answer"])[-1]
conversation_history.append(response)
with open("./educhat_query_record.txt", 'a+') as f:
f.write(str(conversation_history) + '\n')
chatbot[-1] = (query, parse_text(response))
history = history + [(query, response)]
print(f"chatbot is {chatbot}")
print(f"history is {history}")
return chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">欢迎使用 EduChat 人工智能助手!</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(
0, 2048, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.2, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=1, step=0.01, label="Temperature", interactive=True)
history = gr.State([]) # (message, bot_message)
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(inbrowser=True, share=True)