-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresave_dict.py
55 lines (36 loc) · 1.15 KB
/
resave_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from PIL import Image
from dataset import get_loader
import torch
from torchvision import transforms
from tqdm import tqdm
from torch import nn
import os
from models import GICD
# #
# pre_dict = torch.load('./param/checkpoint.pth')
# param = pre_dict['state_dict']
# epoch = pre_dict['epoch']
# print(epoch)
# torch.save(param, './param/gicd.pth')
# ------------------------------------------------
# device = torch.device("cuda")
# model = GICD()
# model = model.to(device)
# checkpoint = torch.load('./param/checkpoint.pth')
# pretrained_dict = checkpoint['state_dict']
# model.to(device)
# model_dict=model.state_dict()
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# model.load_state_dict(model_dict)
# model_dict = model.state_dict()
# torch.save(model_dict, './param/gicd.pth')
# ------------------------------------------------
device = torch.device("cuda")
model = GICD()
model = model.to(device)
gicd_dic = torch.load('./param/gicd.pth')
model.to(device)
model.load_state_dict(gicd_dic)
ginet_dict = model.ginet.state_dict()
torch.save(ginet_dict, './param/gicd_ginet.pth')