-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_IFBUS3SA_partppi.py
826 lines (721 loc) · 40.3 KB
/
train_IFBUS3SA_partppi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 16 18:41:38 2020
@author: xugang
@edit: Henriette Capel 20 Mar 2021
"""
import time
from my_model_mylabels_prob import Model
import tensorflow as tf
import numpy as np
from tensorflow import keras
from utils_mylabels_partPPI import InputReader, cal_accuracy, error_analyse
import click
import random
import os
import csv
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_curve,roc_auc_score,precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.metrics import f1_score, precision_score, recall_score
import matplotlib.pyplot as plt
from sklearn.metrics import auc
from sklearn.metrics import accuracy_score
################################################################################
@click.command()
@click.option('--tensorboard-dir', default=None)
@click.option('--training_path', default = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/training_ppi_pdb.txt")
@click.option('--validation_path', default = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/validation_ppi_pdb.txt")
@click.option('--test_path', default = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/test_ppi_pdb.txt")
@click.option('--output_erroranalyse', default = None)
@click.option('--lr', default = 1e-4)
@click.option('--class-imbalance-major', default = 1.0)
@click.option('--class-imbalance-minor', default = 1.0)
@click.option('--part_ppi_anno', default = 1)
################################################################################
def main(tensorboard_dir, training_path, validation_path, test_path, output_erroranalyse, lr, class_imbalance_major, class_imbalance_minor, part_ppi_anno):
print("tensorboard directory is: {}".format(tensorboard_dir))
print("Path to list of training samples: {}".format(training_path))
print("Path to list of validation samples: {}".format(validation_path))
print("learning rate: {}".format(lr))
print("class imbalance: {}".format([class_imbalance_major, class_imbalance_minor]))
print("Part ppi annotations selected: 1/{}".format(part_ppi_anno))
#train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
train_precision = tf.keras.metrics.Precision(name='train_precision')
train_recall = tf.keras.metrics.Recall(name='train_recall')
train_FP = tf.keras.metrics.FalsePositives(name='train_FP')
train_TP = tf.keras.metrics.TruePositives(name = 'train_TP')
train_FN = tf.keras.metrics.FalseNegatives(name = 'train_FN')
train_TN = tf.keras.metrics.TrueNegatives(name = 'train_TN')
#val_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='val_accuracy')
val_precision = tf.keras.metrics.Precision(name='val_precision')
val_recall = tf.keras.metrics.Recall(name='val_recall')
val_FP = tf.keras.metrics.FalsePositives(name='val_FP')
val_TP = tf.keras.metrics.TruePositives(name = 'val_TP')
val_FN = tf.keras.metrics.FalseNegatives(name = 'val_FN')
val_TN = tf.keras.metrics.TrueNegatives(name = 'val_TN')
test_precision = tf.keras.metrics.Precision(name='test_precision')
test_recall = tf.keras.metrics.Recall(name='test_recall')
test_FP = tf.keras.metrics.FalsePositives(name='test_FP')
test_TP = tf.keras.metrics.TruePositives(name = 'test_TP')
test_FN = tf.keras.metrics.FalseNegatives(name = 'test_FN')
test_TN = tf.keras.metrics.TrueNegatives(name = 'test_TN')
#parameters of training
batch_size = 4
epochs = 40
early_stop = 4
input_normalization = True
learning_rate = lr
params = {}
params["d_input"] = 76
params["d_ss8_output"] = 8
params["d_ss3_output"] = 3
params["d_phipsi_output"] = 4
params["d_csf_output"] = 3
params["d_asa_output"] = 1
params["d_rota_output"] = 8
params["d_buried_output"] = 2
params["d_ppi_output"] = 2
params["dropout_rate"] = 0.25
#parameters of transfomer model
params["transfomer_layers"] = 2
params["transfomer_num_heads"] = 4
#parameters of birnn model
params["lstm_layers"] = 4
params["lstm_units"] = 1024
#parameters of cnn model
params["cnn_layers"] = 5
params["cnn_channels"] = 32
#params["save_path"] = r'./models'
params["save_path"] = "/var/scratch/hcl700/Major_Internship/multi_task/models"
params["weight_loss_phipsi"] = 1
params["weight_loss_csf"] = 1
params["weigth_loss_asa"] = 1
params["weight_loss_ss8"] = 1
params["weight_loss_ss3"] = 1
params["weight_loss_rota"] = 1
params["weight_loss_buried"] = 1
params["weight_loss_ppi"] = 1
#first class weight for majority class, second for minority class
params['class_weights'] = [class_imbalance_major, class_imbalance_minor]
############################################################################
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.print(gpus)
tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), len(logical_gpus))
############################################################################
train_list_path = training_path
val_list_path = validation_path
test_list_path = test_path
train_list_path_ppi = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/training_ppi_pdb.txt"
test_ppi_list_path = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/test_ppi_pdb.txt"
fastas_files_path_trainval = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/trainval_fastas"
inputs_files_path_trainval = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/trainval_inputs"
labels_files_path_trainval = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/trainval_my_labels"
fastas_files_path_test = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/test_fastas"
inputs_files_path_test = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/test_inputs"
labels_files_path_test = "/var/scratch/hcl700/Major_Internship/Data/My_database/Data/test_my_labels"
"""
labels shape:
ss_labels = labels[:,:8]
csf_labels = labels[:,8:11]
phipsi_labels = labels[:,11:15]
dihedrals_labels = labels[:,15:23]
asa_labels = labels[:,23] (/100)
real_phipsidihedrals=labels[:,24:30]
ss3 = labels[:,30:33]
buried = labels[:,33]
nonburied = labels[:,34]
ppi = labels[:,35]
"""
############################################################################
model_IFBUS3SA = Model(params=params, name="IFBUS3SA")
############################################################################
### NEEDED to train on part data
part_ppi_val = 1 #take all the ppi data in the ppi dataset. NOTE: if you want to change this number also give different path to training_ppi_list
train_reader = InputReader(data_list=train_list_path,
inputs_files_path=inputs_files_path_trainval,
labels_files_path=labels_files_path_trainval,
fastas_files_path=fastas_files_path_trainval,
num_batch_size=batch_size,
ppi_list = train_list_path_ppi,
part_ppi = part_ppi_anno,
input_norm=input_normalization,
shuffle=True,
data_enhance=True)
val_reader = InputReader(data_list=val_list_path,
inputs_files_path=inputs_files_path_trainval,
labels_files_path=labels_files_path_trainval,
fastas_files_path=fastas_files_path_trainval,
num_batch_size=batch_size,
ppi_list = False,
part_ppi = part_ppi_val,
input_norm=input_normalization,
shuffle=False,
data_enhance=False)
#
# test_reader = InputReader(data_list=test_list_path,
# inputs_files_path=inputs_files_path_test,
# labels_files_path=labels_files_path_test,
# fastas_files_path=fastas_files_path_test,
# num_batch_size=batch_size,
# ppi_list = False,
# part_ppi = part_ppi_val,
# input_norm=input_normalization,
# shuffle=False,
# data_enhance=False)
#
# erroranalyse_reader = InputReader(data_list=test_ppi_list_path,
# inputs_files_path=inputs_files_path_test,
# labels_files_path=labels_files_path_test,
# fastas_files_path=fastas_files_path_test,
# num_batch_size=batch_size,
# ppi_list = False,
# part_ppi = part_ppi_val,
# input_norm=input_normalization,
# shuffle=False,
# data_enhance=False)
############################################################################
## NEEDED when includding all available data
# train_reader = InputReader(data_list=train_list_path,
# inputs_files_path=inputs_files_path_trainval,
# labels_files_path=labels_files_path_trainval,
# fastas_files_path=fastas_files_path_trainval,
# num_batch_size=batch_size,
# input_norm=input_normalization,
# shuffle=True,
# data_enhance=True)
#
# val_reader = InputReader(data_list=val_list_path,
# inputs_files_path=inputs_files_path_trainval,
# labels_files_path=labels_files_path_trainval,
# fastas_files_path=fastas_files_path_trainval,
# num_batch_size=batch_size,
# input_norm=input_normalization,
# shuffle=False,
# data_enhance=False)
#
# test_reader = InputReader(data_list=test_list_path,
# inputs_files_path=inputs_files_path_test,
# labels_files_path=labels_files_path_test,
# fastas_files_path=fastas_files_path_test,
# num_batch_size=batch_size,
# input_norm=input_normalization,
# shuffle=False,
# data_enhance=False)
#
# erroranalyse_reader = InputReader(data_list=test_ppi_list_path,
# inputs_files_path=inputs_files_path_test,
# labels_files_path=labels_files_path_test,
# fastas_files_path=fastas_files_path_test,
# num_batch_size=batch_size,
# input_norm=input_normalization,
# shuffle=False,
# data_enhance=False)
lr = tf.Variable(tf.constant(learning_rate), name='lr', trainable=False)
optimizer = keras.optimizers.Adam(lr=lr)
#Used by tensorboard to write loss values to
if tensorboard_dir:
print("Creating Tensorboard")
#tensorboard_dir_worker = tensorboard_dir + '/' + str(strategy.cluster_resolver.task_id)
writer = tf.summary.create_file_writer(tensorboard_dir + "/" + "train")
val_writer = tf.summary.create_file_writer(tensorboard_dir + "/" + "val")
test_writer = tf.summary.create_file_writer(tensorboard_dir + "/" + "test")
else:
writer = None
def train_step(x, x_mask, y, y_mask):
ppi_predictions = buried_predictions = ss3_predictions = asa_predictions = None
with tf.GradientTape() as tape:
ppi_predictions, buried_predictions, ss3_predictions, asa_predictions, loss = model_IFBUS3SA.inference(x, x_mask, y, y_mask, training=True)
trainable_variables = model_IFBUS3SA.transformer.trainable_variables + \
model_IFBUS3SA.cnn.trainable_variables + model_IFBUS3SA.birnn.trainable_variables
gradients = tape.gradient(loss, trainable_variables)
optimizer.apply_gradients(
zip(gradients, trainable_variables))
return loss, ppi_predictions, buried_predictions, ss3_predictions, asa_predictions
def infer_step(x, x_mask):
ppi_predictions = buried_predictions = ss3_predictions = asa_predictions = None
ppi_predictions, buried_predictions, ss3_predictions, asa_predictions, _ = model_IFBUS3SA.inference(x, x_mask, y, y_mask, training=False)
return ppi_predictions, buried_predictions, ss3_predictions, asa_predictions
def correct_formatting(targets, predictions):
#No amino acids already removed
pred_class = tf.argmax(predictions, 1)
pred_prob = tf.reshape(predictions[:,1], [tf.shape(predictions)[0]])
tar = tf.reshape(targets, [tf.shape(targets)[0]])
pred_class = pred_class.numpy()
pred_prob = pred_prob.numpy()
tar = tar.numpy()
return tar, pred_class, pred_prob
def metrices(targets, predictions, predictions_probabilities_interface, set):
fpr , tpr , thresholds = roc_curve(targets, predictions_probabilities_interface)
auc_roc = roc_auc_score(targets,predictions_probabilities_interface)
precision = precision_score(targets, predictions, zero_division = 0)
recall = recall_score(targets, predictions, zero_division = 0)
precision_list , recall_list , thresholds_PR = precision_recall_curve(targets, predictions_probabilities_interface)
auc_pr = auc(recall_list, precision_list)
P = sum(targets)
N = len(targets)-P
fraction_positive = P / (P+N)
if set == "train":
train_precision.update_state(targets, predictions)
train_recall.update_state(targets, predictions)
train_TP.update_state(targets, predictions)
train_FP.update_state(targets, predictions)
train_FN.update_state(targets, predictions)
train_TN.update_state(targets, predictions)
elif set == "val":
val_precision.update_state(targets, predictions)
val_recall.update_state(targets, predictions)
val_TP.update_state(targets, predictions)
val_FP.update_state(targets, predictions)
val_FN.update_state(targets, predictions)
val_TN.update_state(targets, predictions)
elif set == "test":
test_precision.update_state(targets, predictions)
test_recall.update_state(targets, predictions)
test_TP.update_state(targets, predictions)
test_FP.update_state(targets, predictions)
test_FN.update_state(targets, predictions)
test_TN.update_state(targets, predictions)
return fpr, tpr, auc_roc, precision, recall, precision_list, recall_list, fraction_positive, auc_pr
def plotting_roc(fpr, tpr, auc_score, path, epoch):
lw = 1
plt.figure(1) #write all ROC to this output file
plt.plot(fpr, tpr, label= 'ROC epoch {} (area = {:.3f})'.format(epoch + 1, auc_score))
plt.plot([0,1], [0,1], color="navy", lw=lw, linestyle='--')
plt.ylabel('True positive rate', size = 10)
plt.xlabel("False positive rate", size = 10)
plt.legend(loc="lower right", fontsize= 8)
plt.xticks(size = 10)
plt.yticks(size = 10)
plt.savefig(path)
def plotting_pr(recall, precision, fraction_positive, path, epoch):
lw = 1
plt.figure(2) ##write all PR plots to same file
plt.plot(recall, precision, label = 'PR epoch {}'.format(epoch + 1))
plt.hlines(fraction_positive, 0, 1, color="navy", lw=lw, linestyle='--')
plt.ylabel('precision', size = 10)
plt.xlabel("recall", size = 10)
plt.legend(loc="upper right", fontsize= 8)
plt.xticks(size = 10)
plt.yticks(size = 10)
plt.savefig(path)
def write_output_plots(auc_roc, auc_pr, fraction_positive, targets, predictions, pred_prob_IF, path):
file = open(path, "w")
file.write("auc_roc: " + str(auc_roc) + "\n")
file.write("auc_pr: " + str(auc_pr)+ "\n")
file.write("fraction_positive: " + str(fraction_positive) + "\n")
file.write("targets: " + str(targets) + "\n")
file.write("predictions: " + str(predictions) + "\n")
file.write("pred_prob_IF: " + str(pred_prob_IF) + "\n")
file.close()
best_acc = 0
best_auc_roc = 0
step_train = 0
for epoch in range(epochs):
#======================Train======================
accuracy_train_ppi = []
accuracy_train_buried = []
accuracy_train_ss3 = []
pearson_train_asa = []
#train_accuracy.reset_states()
train_precision.reset_states()
train_recall.reset_states()
train_TP.reset_states()
train_FP.reset_states()
train_FN.reset_states()
train_TN.reset_states()
target_list_train = []
prediction_list_train = []
probability_list_train = []
for step, filenames_batch in enumerate(train_reader.dataset):
step_train += 1
start_time = time.time()
# x (batch, max_len, 76)
# x_mask (batch, max_len)
# encoder_padding_mask (batch, 1, 1, max_len)
# y (batch, max_len, 30)
# y_mask (batch, max_len, 30)
filenames, x, x_mask, y, y_mask, inputs_total_len, labels_total_len = \
train_reader.read_file_from_disk(filenames_batch)
#check if inputs_total_len equals labels_total_len otherwise AssertionError
assert inputs_total_len == labels_total_len
loss, ppi_predictions, buried_predictions, ss3_predictions, asa_predictions = train_step(x, x_mask, y, y_mask)
#extend == append
#ppi prediction
acc_ppi, pred, tar, weights = cal_accuracy("PPI", ppi_predictions, y, y_mask, total_len = inputs_total_len)
if acc_ppi is not None:
accuracy_train_ppi.extend(acc_ppi)
target_list, prediction_list, probability_list = correct_formatting(tar, pred)
target_list_train.extend(target_list)
prediction_list_train.extend(prediction_list)
probability_list_train.extend(probability_list)
accuracy_train_buried.extend(
cal_accuracy("Buried", buried_predictions, y, y_mask, total_len = inputs_total_len))
accuracy_train_ss3.extend(
cal_accuracy("SS3", ss3_predictions, y, y_mask, total_len=inputs_total_len))
pearson_asa = cal_accuracy("ASA", asa_predictions, y, y_mask, total_len = inputs_total_len)
pearson_train_asa.append(pearson_asa)
run_time = time.time() - start_time
if step % 20 == 0:
#train_accuracy(tar, pred)
if len(target_list_train) > 0:
if sum(target_list_train) >= 1 and sum(target_list_train) != len(target_list_train):
fpr, tpr, auc_roc, precision, recall, precision_list, recall_list, fraction_positive, auc_pr = metrices(target_list_train, prediction_list_train, probability_list_train, "train")
# print('Epoch: %d, step: %d, loss: %3.3f, acc_ppi: %3.4f, acc_ppi_keras: %3.4f, prec: %3.4f, prec_my: %3.4f, recall: %3.4f, recall_my: %3.4f, TP: %0.1f, FP: %0.1f, TN: %0.1f, FN: %0.1f, AUC: %3.4f, time: %3.3f'
# % (epoch, step, loss, np.mean(accuracy_train_ppi), train_accuracy.result(), train_precision.result(), precision, train_recall.result(), recall, train_TP.result(), train_FP.result(), train_TN.result(), train_FN.result(), auc_score, run_time))
print('Epoch: %d, step: %d, loss: %3.3f, pear_asa: %3.4f, acc_ss3: %3.4f, acc_bur: %3.4f, acc_ppi: %3.4f, AUC_roc: %3.4f, AUC_pr: %3.4f, prec: %3.4f, recall: %3.4f, TP: %0.1f, FP: %0.1f, TN: %0.1f, FN: %0.1f, time: %3.3f'
% (epoch, step, loss, np.mean(pearson_train_asa), np.mean(accuracy_train_ss3), np.mean(accuracy_train_buried), np.mean(accuracy_train_ppi), auc_roc, auc_pr, train_precision.result(), train_recall.result(), train_TP.result(), train_FP.result(), train_TN.result(), train_FN.result(), run_time))
if writer:
with writer.as_default():
tf.summary.scalar('loss', loss, step_train)
tf.summary.scalar('accuracy_ppi', np.mean(accuracy_train_ppi), step_train)
tf.summary.scalar("auc_roc", auc_roc, step_train)
tf.summary.scalar("auc_pr", auc_pr, step_train)
tf.summary.scalar("accuracy_buried", np.mean(accuracy_train_buried), step_train)
tf.summary.scalar("accuracy_ss3", np.mean(accuracy_train_ss3), step_train)
tf.summary.scalar("pearson_asa", np.mean(pearson_train_asa), step_train)
else:
print("ERROR: target list contains no interface positions or only interface positions")
print(len(target_list_train))
print(filenames)
else:
print("None ppi seen")
print(len(target_list_train))
#======================Val======================
accuracy_val_ppi = []
accuracy_val_buried = []
accuracy_val_ss3 = []
pearson_val_asa = []
#val_accuracy.reset_states()
val_precision.reset_states()
val_recall.reset_states()
val_TP.reset_states()
val_FP.reset_states()
val_FN.reset_states()
val_TN.reset_states()
target_list_val = []
prediction_list_val = []
probability_list_val = []
start_time = time.time()
for step, filenames_batch in enumerate(val_reader.dataset):
filenames, x, x_mask, y, y_mask, inputs_total_len, labels_total_len = \
val_reader.read_file_from_disk(filenames_batch)
assert inputs_total_len == labels_total_len
ppi_predictions, buried_predictions, ss3_predictions, asa_predictions = infer_step(x, x_mask)
#ppi predictions
acc_ppi, pred, tar, weights = cal_accuracy("PPI", ppi_predictions, y, y_mask, total_len = inputs_total_len)
if acc_ppi is not None:
accuracy_val_ppi.extend(acc_ppi)
target_list, prediction_list, probability_list = correct_formatting(tar, pred)
#Use extend not append to add all elements to the big list.
target_list_val.extend(target_list)
prediction_list_val.extend(prediction_list)
probability_list_val.extend(probability_list)
accuracy_val_buried.extend(
cal_accuracy("Buried", buried_predictions, y, y_mask, total_len = inputs_total_len))
accuracy_val_ss3.extend(
cal_accuracy("SS3", ss3_predictions, y, y_mask, total_len=inputs_total_len))
pearson_asa = cal_accuracy("ASA", asa_predictions, y, y_mask, total_len = inputs_total_len)
pearson_val_asa.append(pearson_asa)
#End of validation
run_time = time.time() - start_time
fpr_val, tpr_val, auc_roc_val, precision_val, recall_val, precision_list_val, recall_list_val, fraction_positive_val, auc_pr_val = metrices(target_list_val, prediction_list_val, probability_list_val, "val")
print('Epoch: %d, lr: %s, pear_asa: %3.4f, acc_ss3: %3.4f, acc_bur: %3.4f, acc_ppi: %3.4f, AUC_roc: %3.4f, AUC_pr %3.4f, prec: %3.4f, recall: %3.4f, TP: %0.1f, FP: %0.1f, TN: %0.1f, FN: %0.1f, time: %3.3f'
% (epoch, str(lr.numpy()), np.mean(pearson_val_asa), np.mean(accuracy_val_ss3), np.mean(accuracy_val_buried), np.mean(accuracy_val_ppi), auc_roc_val, auc_pr_val, val_precision.result(), val_recall.result(), val_TP.result(), val_FP.result(), val_TN.result(), val_FN.result(), run_time))
#optimise for AUC score
#if np.mean(accuracy_val_ppi) > best_acc:
if auc_roc_val > best_auc_roc:
best_acc = np.mean(accuracy_val_ppi)
best_epoch = epoch
best_auc_roc = auc_roc_val
best_auc_pr = auc_pr_val
best_precision = precision_val
best_recall = recall_val
best_TP = val_TP.result()
best_FP = val_FP.result()
best_TN = val_TN.result()
best_FN = val_FN.result()
best_target_list = target_list_val
best_prediction_list = prediction_list_val
best_probabilities_list = probability_list_val
best_acc_bur = np.mean(accuracy_val_buried)
best_acc_ss3 = np.mean(accuracy_val_ss3)
best_pear_asa = np.mean(pearson_val_asa)
best_fpr = fpr_val
best_tpr = tpr_val
best_recall_list = recall_list_val
best_precision_list = precision_list_val
best_fraction_positive = fraction_positive_val
model_IFBUS3SA.save_model()
else:
lr.assign(lr/2)
early_stop -= 1
if early_stop == 0:
break
# END OF EPOCH SUMMARY
if writer:
with writer.as_default():
tf.summary.scalar('epoch_loss', loss, epoch)
tf.summary.scalar('epoch_accuracy_ppi', np.mean(accuracy_train_ppi), epoch)
tf.summary.scalar("epoch_auc_roc", auc_roc, epoch)
tf.summary.scalar("epoch_auc_pr", auc_pr, epoch)
tf.summary.scalar("epoch_accuracy_bur", np.mean(accuracy_train_buried), epoch)
tf.summary.scalar("epoch_accuracy_ss3", np.mean(accuracy_train_ss3), epoch)
tf.summary.scalar("epoch_pearson_asa", np.mean(pearson_train_asa), epoch)
if val_writer:
with val_writer.as_default():
tf.summary.scalar('learning_rate', lr.numpy(), epoch)
tf.summary.scalar('epoch_accuracy_ppi', np.nanmean(accuracy_val_ppi), epoch)
tf.summary.scalar("epoch_auc_roc", auc_roc_val, epoch)
tf.summary.scalar("epoch_auc_pr", auc_pr_val, epoch)
tf.summary.scalar('val_precision_ppi', val_precision.result(), epoch)
tf.summary.scalar('val_recall_ppi', val_recall.result(), epoch)
tf.summary.scalar('val_TP_ppi', val_TP.result(), epoch)
tf.summary.scalar('val_FP_ppi', val_FP.result(), epoch)
tf.summary.scalar('val_TN_ppi', val_TN.result(), epoch)
tf.summary.scalar('val_FN_ppi', val_FN.result(), epoch)
tf.summary.scalar("epoch_accuracy_bur", np.mean(accuracy_val_buried), epoch)
tf.summary.scalar("epoch_accuracy_ss3", np.mean(accuracy_val_ss3), epoch)
tf.summary.scalar("epoch_pearson_asa", np.mean(pearson_val_asa), epoch)
#print("best_val_ppi_accuracy:", best_acc)
print("best auc roc: ", best_auc_roc)
#Print the best epoch
print("Corresponding best performance measures:")
print('Epoch: %d, pear_asa: %3.4f, acc_ss3: %3.4f, acc_bur: %3.4f, acc_ppi: %3.4f, AUC_roc: %3.4f, AUC_pr: %3.4f, prec: %3.4f, recall: %3.4f, TP: %0.1f, FP: %0.1f, TN: %0.1f, FN: %0.1f'
% (best_epoch, best_pear_asa, best_acc_ss3, best_acc_bur, best_acc, best_auc_roc, best_auc_pr, best_precision, best_recall, best_TP, best_FP, best_TN, best_FN))
#Print the curves for that epoch
# path_fig_roc = tensorboard_dir + "/ROC.png"
# plotting_roc(best_fpr, best_tpr, best_auc, path_fig_roc, best_epoch)
# path_fig_pr = tensorboard_dir + "/PR.png"
# plotting_pr(best_recall_list, best_precision_list, best_fraction_positive, path_fig_pr, best_epoch)
path_output_write = tensorboard_dir + "/output.txt"
write_output_plots(best_auc_roc, best_auc_pr, best_fraction_positive, best_target_list, best_prediction_list, best_probabilities_list, path_output_write)
# #=====================Error analyse================
# #NOTE: need different one because of problems when using dataset including proteins without ppi annotations
# if output_erroranalyse:
# model_IFBUS3SA_error = Model(params=params, name="IFBUS3SA")
# model_IFBUS3SA_error.load_model()
#
# def error_infer_step(x, x_mask):
#
# ppi_predictions = buried_predictions = ss3_predictions = asa_predictions = None
#
# ppi_predictions, buried_predictions, ss3_predictions, asa_predictions, _ = \
# model_IFBUS3SA_error.inference(x, x_mask, y, y_mask, training=False)
#
# return ppi_predictions, buried_predictions, ss3_predictions, asa_predictions
#
# def error_analyse_store(info_tflist, save_list, index_list):
# info_list = info_tflist.tolist()
#
# for i in range(0, len(index_list)-1):
# info_seq = info_list[index_list[i]:index_list[i+1]]
# save_list.append(info_seq)
# return save_list
#
# ### ERROR analyse
# filenames_list = []
# target_ppi_list_error = []
# prediction_ppi_list_error = []
# probability_ppi_list_error = []
#
# target_bur_list_error = []
# prediction_bur_list_error = []
# target_asa_list_error = []
# prediction_asa_list_error = []
# target_ss3_list_error = []
# prediction_ss3_list_error = []
#
# sequences_total = []
# length_seq_total = []
#
# acc_ppi_error_list = []
# auc_roc_error_list = []
# auc_pr_error_list = []
# precision_error_list = []
# recall_error_list = []
# acc_bur_error_list = []
# pcc_asa_error_list = []
# acc_ss3_error_list = []
#
# start_time = time.time()
# for step, filenames_batch in enumerate(erroranalyse_reader.dataset):
#
# filenames, x, x_mask, y, y_mask, inputs_total_len, labels_total_len = \
# erroranalyse_reader.read_file_from_disk(filenames_batch)
#
# assert inputs_total_len == labels_total_len
#
# filenames_batch_ppi = []
# length_seq_batch = []
# for filename in filenames:
# fasta_ = open(os.path.join(fastas_files_path_test, filename + ".fasta"), "r")
# for line in fasta_:
# if line[0] == ">":
# length = line.strip("\n").split(" ")[1]
# length_seq_batch.append(int(length))
# else:
# seq = line.strip("\n")
# aa_seq = []
# aa_seq[:0] = seq
# sequences_total.append(aa_seq)
# fasta_.close()
# length_seq_total.extend(length_seq_batch)
# filenames_list.extend(filenames)
#
# ########
# ppi_predictions, buried_predictions, ss3_predictions, asa_predictions = error_infer_step(x, x_mask)
#
# acc_ppi, pred, tar, weights = cal_accuracy("PPI", ppi_predictions, y, y_mask, total_len = inputs_total_len)
# target_list_ppi, prediction_list_ppi, probability_list_ppi = correct_formatting(tar, pred)
#
# tar_bur, pred_bur = error_analyse("Buried", buried_predictions, y, y_mask)
# tar_bur = tar_bur.numpy()
# pred_bur = pred_bur.numpy()
#
# tar_asa, pred_asa = error_analyse("ASA", asa_predictions, y, y_mask)
# tar_asa = tar_asa.numpy()
# pred_asa = pred_asa.numpy()
#
# tar_ss3, pred_ss3 = error_analyse("SS3", ss3_predictions, y, y_mask)
# tar_ss3 = tar_ss3.numpy()
# pred_ss3 = pred_ss3.numpy()
#
# index_list = [0]
# for i in range(0,len(filenames)):
# value = index_list[i] + length_seq_batch[i]
# index_list.append(value)
#
# target_ppi_list_error = error_analyse_store(target_list_ppi, target_ppi_list_error, index_list)
# prediction_ppi_list_error = error_analyse_store(prediction_list_ppi, prediction_ppi_list_error, index_list)
# probability_ppi_list_error = error_analyse_store(probability_list_ppi, probability_ppi_list_error, index_list)
#
# target_bur_list_error = error_analyse_store(tar_bur, target_bur_list_error, index_list)
# prediction_bur_list_error = error_analyse_store(pred_bur, prediction_bur_list_error, index_list)
#
# target_asa_list_error = error_analyse_store(tar_asa, target_asa_list_error, index_list)
# prediction_asa_list_error = error_analyse_store(pred_asa, prediction_asa_list_error, index_list)
#
# target_ss3_list_error = error_analyse_store(tar_ss3, target_ss3_list_error, index_list)
# prediction_ss3_list_error = error_analyse_store(pred_ss3, prediction_ss3_list_error, index_list)
#
# run_time = time.time() - start_time
#
# #### ERROR analyse ####
# no_annotations = []
# summary_filename_list = []
# print("Perform error analyse")
# for i in range(0,len(filenames_list)):
# if sum(target_ppi_list_error[i]) == 0:
# no_annotations.append(filenames_list[i])
# else:
# summary_filename_list.append(filenames_list[i])
# fpr, tpr, auc_roc, precision, recall, precision_list, recall_list, fraction_positive, auc_pr = metrices(target_ppi_list_error[i], prediction_ppi_list_error[i], probability_ppi_list_error[i], "None")
# auc_roc_error_list.append(auc_roc)
# auc_pr_error_list.append(auc_pr)
# precision_error_list.append(precision)
# recall_error_list.append(recall)
#
# acc_ppi = accuracy_score(target_ppi_list_error[i], prediction_ppi_list_error[i])
# acc_ppi_error_list.append(acc_ppi)
#
# acc_bur = accuracy_score(target_bur_list_error[i], prediction_bur_list_error[i])
# acc_bur_error_list.append(acc_bur)
#
# pcc_asa = np.corrcoef(target_asa_list_error[i], prediction_asa_list_error[i])[0][1]
# pcc_asa_error_list.append(pcc_asa)
#
# acc_ss3 = accuracy_score(target_ss3_list_error[i], prediction_ss3_list_error[i])
# acc_ss3_error_list.append(acc_ss3)
#
# output_path = output_erroranalyse
# os.makedirs(output_path, exist_ok=True)
#
# sumfile_path = output_path + "/summary.txt"
# with open(sumfile_path, "w") as f:
# writer_sum = csv.writer(f, delimiter='\t')
# writer_sum.writerow(("ID", "acc_ppi", "auc_roc_ppi", "auc_pr_ppi", "precision_ppi", "recall_ppi", "acc_bur", "acc_ss3", "pcc_asa"))
# writer_sum.writerows(zip(summary_filename_list, acc_ppi_error_list, auc_roc_error_list, auc_pr_error_list, precision_error_list, recall_error_list, acc_bur_error_list, acc_ss3_error_list, pcc_asa_error_list))
#
# for i in range(0, len(filenames_list)):
# list_filename = [filenames_list[i]]*length_seq_total[i]
# list_aa_seq = sequences_total[i]
# list_tar = map(int, target_ppi_list_error[i])
# list_pred = prediction_ppi_list_error[i]
# list_prob = probability_ppi_list_error[i]
# list_bur_tar = target_bur_list_error[i]
# list_bur_pred = prediction_bur_list_error[i]
# list_ss3_tar = target_ss3_list_error[i]
# list_ss3_pred = prediction_ss3_list_error[i]
# list_asa_tar = target_asa_list_error[i]
# list_asa_pred = prediction_asa_list_error[i]
#
# datafile_path = output_path + "/" + filenames_list[i] + ".txt"
# with open(datafile_path, "w") as f:
# writer_out = csv.writer(f, delimiter='\t')
# writer_out.writerow(("ID", "AA", "PPI_tar", "PPI_pred", "PPI_prob", "bur_tar", "bur_pred", "ss3_tar", "ss3_pred", "asa_tar", "asa_pred"))
# writer_out.writerows(zip(list_filename, list_aa_seq, list_tar, list_pred, list_prob, list_bur_tar, list_bur_pred, list_ss3_tar, list_ss3_pred, list_asa_tar, list_asa_pred))
#
#
# # #======================Test======================
# #
# model_IFBUS3SA_test = Model(params=params, name="IFBUS3SA")
# model_IFBUS3SA_test.load_model()
#
# def test_infer_step(x, x_mask):
#
# ppi_predictions = buried_predictions = ss3_predictions = asa_predictions = None
#
# ppi_predictions, buried_predictions, ss3_predictions, asa_predictions, _ = \
# model_IFBUS3SA_test.inference(x, x_mask, y, y_mask, training=False)
#
# return ppi_predictions, buried_predictions, ss3_predictions, asa_predictions
#
# accuracy_test_ppi = []
# accuracy_test_buried = []
# accuracy_test_ss3 = []
# pearson_test_asa = []
#
# target_list_test = []
# prediction_list_test = []
# probability_list_test = []
#
# start_time = time.time()
# for step, filenames_batch in enumerate(test_reader.dataset):
#
# filenames, x, x_mask, y, y_mask, inputs_total_len, labels_total_len = \
# test_reader.read_file_from_disk(filenames_batch)
#
# assert inputs_total_len == labels_total_len
#
# ppi_predictions, buried_predictions, ss3_predictions, asa_predictions = \
# test_infer_step(x, x_mask)
#
#
# acc_ppi, pred, tar, weights = cal_accuracy("PPI", ppi_predictions, y, y_mask, total_len = inputs_total_len)
# if acc_ppi is not None:
# accuracy_test_ppi.extend(acc_ppi)
# target_list, prediction_list, probability_list = correct_formatting(tar, pred)
# #Use extend not append to add all elements to the big list.
# target_list_test.extend(target_list)
# prediction_list_test.extend(prediction_list)
# probability_list_test.extend(probability_list)
#
# accuracy_test_buried.extend(
# cal_accuracy("Buried", buried_predictions, y, y_mask, total_len = inputs_total_len))
#
# accuracy_test_ss3.extend(
# cal_accuracy("SS3", ss3_predictions, y, y_mask, total_len=inputs_total_len))
#
# pearson_asa = cal_accuracy("ASA", asa_predictions, y, y_mask, total_len = inputs_total_len)
# pearson_test_asa.append(pearson_asa)
#
# run_time = time.time() - start_time
# fpr_test, tpr_test, auc_roc_test, precision_test, recall_test, precision_list_test, recall_list_test, fraction_positive_test, auc_pr_test = metrices(target_list_test, prediction_list_test, probability_list_test, "test")
#
# print('pear_asa: %3.4f, acc_ss3: %3.4f, acc_bur: %3.4f, acc_ppi: %3.4f, AUC_roc: %3.4f, AUC_pr %3.4f, prec: %3.4f, recall: %3.4f, TP: %0.1f, FP: %0.1f, TN: %0.1f, FN: %0.1f, time: %3.3f'
# % (np.mean(pearson_test_asa), np.mean(accuracy_test_ss3), np.mean(accuracy_test_buried), np.mean(accuracy_test_ppi), auc_roc_test, auc_pr_test, test_precision.result(), test_recall.result(), test_TP.result(), test_FP.result(), test_TN.result(), test_FN.result(), run_time))
if __name__ == '__main__':
main()