forked from CreamFi/compound-protocol
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathExponential.sol
457 lines (388 loc) · 15.1 KB
/
Exponential.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
pragma solidity ^0.5.16;
import "./CarefulMath.sol";
/**
* @title Exponential module for storing fixed-precision decimals
* @author Compound
* @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
* Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
* `Exp({mantissa: 5100000000000000000})`.
*/
contract Exponential is CarefulMath {
uint256 constant expScale = 1e18;
uint256 constant doubleScale = 1e36;
uint256 constant halfExpScale = expScale / 2;
uint256 constant mantissaOne = expScale;
struct Exp {
uint256 mantissa;
}
struct Double {
uint256 mantissa;
}
/**
* @dev Creates an exponential from numerator and denominator values.
* Note: Returns an error if (`num` * 10e18) > MAX_INT,
* or if `denom` is zero.
*/
function getExp(uint256 num, uint256 denom) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 scaledNumerator) = mulUInt(num, expScale);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
(MathError err1, uint256 rational) = divUInt(scaledNumerator, denom);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: rational}));
}
/**
* @dev Adds two exponentials, returning a new exponential.
*/
function addExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
(MathError error, uint256 result) = addUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
/**
* @dev Subtracts two exponentials, returning a new exponential.
*/
function subExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
(MathError error, uint256 result) = subUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
/**
* @dev Multiply an Exp by a scalar, returning a new Exp.
*/
function mulScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 scaledMantissa) = mulUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mulScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (MathError, uint256) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(product));
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mulScalarTruncateAddUInt(
Exp memory a,
uint256 scalar,
uint256 addend
) internal pure returns (MathError, uint256) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return addUInt(truncate(product), addend);
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mul_ScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (uint256) {
Exp memory product = mul_(a, scalar);
return truncate(product);
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mul_ScalarTruncateAddUInt(
Exp memory a,
uint256 scalar,
uint256 addend
) internal pure returns (uint256) {
Exp memory product = mul_(a, scalar);
return add_(truncate(product), addend);
}
/**
* @dev Divide an Exp by a scalar, returning a new Exp.
*/
function divScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 descaledMantissa) = divUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
}
/**
* @dev Divide a scalar by an Exp, returning a new Exp.
*/
function divScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (MathError, Exp memory) {
/*
We are doing this as:
getExp(mulUInt(expScale, scalar), divisor.mantissa)
How it works:
Exp = a / b;
Scalar = s;
`s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
*/
(MathError err0, uint256 numerator) = mulUInt(expScale, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return getExp(numerator, divisor.mantissa);
}
/**
* @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
*/
function divScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (MathError, uint256) {
(MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(fraction));
}
/**
* @dev Divide a scalar by an Exp, returning a new Exp.
*/
function div_ScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (Exp memory) {
/*
We are doing this as:
getExp(mulUInt(expScale, scalar), divisor.mantissa)
How it works:
Exp = a / b;
Scalar = s;
`s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
*/
uint256 numerator = mul_(expScale, scalar);
return Exp({mantissa: div_(numerator, divisor)});
}
/**
* @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
*/
function div_ScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (uint256) {
Exp memory fraction = div_ScalarByExp(scalar, divisor);
return truncate(fraction);
}
/**
* @dev Multiplies two exponentials, returning a new exponential.
*/
function mulExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
// We add half the scale before dividing so that we get rounding instead of truncation.
// See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
// Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
(MathError err1, uint256 doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
(MathError err2, uint256 product) = divUInt(doubleScaledProductWithHalfScale, expScale);
// The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
assert(err2 == MathError.NO_ERROR);
return (MathError.NO_ERROR, Exp({mantissa: product}));
}
/**
* @dev Multiplies two exponentials given their mantissas, returning a new exponential.
*/
function mulExp(uint256 a, uint256 b) internal pure returns (MathError, Exp memory) {
return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
}
/**
* @dev Multiplies three exponentials, returning a new exponential.
*/
function mulExp3(
Exp memory a,
Exp memory b,
Exp memory c
) internal pure returns (MathError, Exp memory) {
(MathError err, Exp memory ab) = mulExp(a, b);
if (err != MathError.NO_ERROR) {
return (err, ab);
}
return mulExp(ab, c);
}
/**
* @dev Divides two exponentials, returning a new exponential.
* (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
* which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
*/
function divExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
return getExp(a.mantissa, b.mantissa);
}
/**
* @dev Truncates the given exp to a whole number value.
* For example, truncate(Exp{mantissa: 15 * expScale}) = 15
*/
function truncate(Exp memory exp) internal pure returns (uint256) {
// Note: We are not using careful math here as we're performing a division that cannot fail
return exp.mantissa / expScale;
}
/**
* @dev Checks if first Exp is less than second Exp.
*/
function lessThanExp(Exp memory left, Exp memory right) internal pure returns (bool) {
return left.mantissa < right.mantissa;
}
/**
* @dev Checks if left Exp <= right Exp.
*/
function lessThanOrEqualExp(Exp memory left, Exp memory right) internal pure returns (bool) {
return left.mantissa <= right.mantissa;
}
/**
* @dev returns true if Exp is exactly zero
*/
function isZeroExp(Exp memory value) internal pure returns (bool) {
return value.mantissa == 0;
}
function safe224(uint256 n, string memory errorMessage) internal pure returns (uint224) {
require(n < 2**224, errorMessage);
return uint224(n);
}
function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function add_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(uint256 a, uint256 b) internal pure returns (uint256) {
return add_(a, b, "addition overflow");
}
function add_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, errorMessage);
return c;
}
function sub_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(uint256 a, uint256 b) internal pure returns (uint256) {
return sub_(a, b, "subtraction underflow");
}
function sub_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
function mul_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
}
function mul_(Exp memory a, uint256 b) internal pure returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint256 a, Exp memory b) internal pure returns (uint256) {
return mul_(a, b.mantissa) / expScale;
}
function mul_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
}
function mul_(Double memory a, uint256 b) internal pure returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint256 a, Double memory b) internal pure returns (uint256) {
return mul_(a, b.mantissa) / doubleScale;
}
function mul_(uint256 a, uint256 b) internal pure returns (uint256) {
return mul_(a, b, "multiplication overflow");
}
function mul_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
if (a == 0 || b == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, errorMessage);
return c;
}
function div_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
}
function div_(Exp memory a, uint256 b) internal pure returns (Exp memory) {
return Exp({mantissa: div_(a.mantissa, b)});
}
function div_(uint256 a, Exp memory b) internal pure returns (uint256) {
return div_(mul_(a, expScale), b.mantissa);
}
function div_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
}
function div_(Double memory a, uint256 b) internal pure returns (Double memory) {
return Double({mantissa: div_(a.mantissa, b)});
}
function div_(uint256 a, Double memory b) internal pure returns (uint256) {
return div_(mul_(a, doubleScale), b.mantissa);
}
function div_(uint256 a, uint256 b) internal pure returns (uint256) {
return div_(a, b, "divide by zero");
}
function div_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
function fraction(uint256 a, uint256 b) internal pure returns (Double memory) {
return Double({mantissa: div_(mul_(a, doubleScale), b)});
}
// implementation from https://github.com/Uniswap/uniswap-lib/commit/99f3f28770640ba1bb1ff460ac7c5292fb8291a0
// original implementation: https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMath64x64.sol#L687
function sqrt(uint256 x) internal pure returns (uint256) {
if (x == 0) return 0;
uint256 xx = x;
uint256 r = 1;
if (xx >= 0x100000000000000000000000000000000) {
xx >>= 128;
r <<= 64;
}
if (xx >= 0x10000000000000000) {
xx >>= 64;
r <<= 32;
}
if (xx >= 0x100000000) {
xx >>= 32;
r <<= 16;
}
if (xx >= 0x10000) {
xx >>= 16;
r <<= 8;
}
if (xx >= 0x100) {
xx >>= 8;
r <<= 4;
}
if (xx >= 0x10) {
xx >>= 4;
r <<= 2;
}
if (xx >= 0x8) {
r <<= 1;
}
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1; // Seven iterations should be enough
uint256 r1 = x / r;
return (r < r1 ? r : r1);
}
}