-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
33 lines (31 loc) · 1.27 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from keras.models import Model
from keras.layers import Dense, Conv2D, MaxPooling1D, Input, Embedding, Conv1D, MaxPooling2D, Flatten, Dropout
from keras.optimizers import adam
from keras.utils.np_utils import to_categorical
from keras.callbacks import EarlyStopping
import pickle
import numpy as np
INPUT_SHAPE = (40,)
N_AUTHORS = 3
dicts = pickle.load(open('./dictionaries.p', 'rb'))
def conv_blocks(inputs, n=2):
_inputs = inputs
for i in range(0, n):
conv1 = Conv1D(filters=512, kernel_size=3, padding='same', activation='relu')
conv2 = Conv1D(filters=512, kernel_size=5, padding='same', activation='relu')
mp1 = MaxPooling1D(pool_size=(32,), padding='same')
mp2 = MaxPooling1D(pool_size=(2,), padding='same')
conv1_out = conv1(_inputs)
mp1_out = mp1(conv1_out)
conv2_out = conv2(mp1_out)
mp2_out = mp2(conv2_out)
dropout = Dropout(0.8)
_inputs = dropout(mp2_out)
return _inputs
def build_cnn_return_preds(inputs, n_layers):
embed = Embedding(len(dicts['r_dict']), 40, input_length=40)
embedded_inputs = embed(inputs)
conv_outs = conv_blocks(embedded_inputs, n_layers)
fc_final = Dense(N_AUTHORS, activation='softmax')
fc_final_out = fc_final(conv_outs)
return (fc_final_out, None)