-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathbenchmark.py
146 lines (129 loc) · 6.93 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import time
import os
from trainer import Trainer
os.environ["DDEBACKEND"] = "pytorch"
import numpy as np
import torch
import deepxde as dde
from src.model.laaf import DNN_GAAF, DNN_LAAF
from src.optimizer import MultiAdam, LR_Adaptor, LR_Adaptor_NTK, Adam_LBFGS
from src.pde.burgers import Burgers1D, Burgers2D
from src.pde.chaotic import GrayScottEquation, KuramotoSivashinskyEquation
from src.pde.heat import Heat2D_VaryingCoef, Heat2D_Multiscale, Heat2D_ComplexGeometry, Heat2D_LongTime, HeatND
from src.pde.ns import NS2D_LidDriven, NS2D_BackStep, NS2D_LongTime
from src.pde.poisson import Poisson2D_Classic, PoissonBoltzmann2D, Poisson3D_ComplexGeometry, Poisson2D_ManyArea, PoissonND
from src.pde.wave import Wave1D, Wave2D_Heterogeneous, Wave2D_LongTime
from src.pde.inverse import PoissonInv, HeatInv
from src.utils.args import parse_hidden_layers, parse_loss_weight
from src.utils.callbacks import TesterCallback, PlotCallback, LossCallback
from src.utils.rar import rar_wrapper
# It is recommended not to modify this example file.
# Please copy it as benchmark_xxx.py and make changes according to your own ideas.
pde_list = \
[Burgers1D, Burgers2D] + \
[Poisson2D_Classic, PoissonBoltzmann2D, Poisson3D_ComplexGeometry, Poisson2D_ManyArea] + \
[Heat2D_VaryingCoef, Heat2D_Multiscale, Heat2D_ComplexGeometry, Heat2D_LongTime] + \
[NS2D_LidDriven, NS2D_BackStep, NS2D_LongTime] + \
[Wave1D, Wave2D_Heterogeneous, Wave2D_LongTime] + \
[KuramotoSivashinskyEquation, GrayScottEquation] + \
[PoissonND, HeatND]
# pde_list += \
# [(Burgers2D, {"datapath": "ref/burgers2d_1.dat", "icpath": ("ref/burgers2d_init_u_1.dat", "ref/burgers2d_init_v_1.dat")})] + \
# [(Burgers2D, {"datapath": "ref/burgers2d_2.dat", "icpath": ("ref/burgers2d_init_u_2.dat", "ref/burgers2d_init_v_2.dat")})] + \
# [(Burgers2D, {"datapath": "ref/burgers2d_3.dat", "icpath": ("ref/burgers2d_init_u_3.dat", "ref/burgers2d_init_v_3.dat")})] + \
# [(Burgers2D, {"datapath": "ref/burgers2d_4.dat", "icpath": ("ref/burgers2d_init_u_4.dat", "ref/burgers2d_init_v_4.dat")})] + \
# [(Poisson2D_Classic, {"scale": 2})] + \
# [(Poisson2D_Classic, {"scale": 4})] + \
# [(Poisson2D_Classic, {"scale": 8})] + \
# [(Poisson2D_Classic, {"scale": 16})] + \
# [(Heat2D_Multiscale, {"init_coef": (5 * np.pi, np.pi)})] + \
# [(Heat2D_Multiscale, {"init_coef": (10 * np.pi, np.pi)})] + \
# [(Heat2D_Multiscale, {"init_coef": (40 * np.pi, np.pi)})] + \
# [(NS2D_LidDriven, {"datapath": "ref/lid_driven_a2.dat", "a": 2})] + \
# [(NS2D_LidDriven, {"datapath": "ref/lid_driven_a8.dat", "a": 8})] + \
# [(NS2D_LidDriven, {"datapath": "ref/lid_driven_a16.dat", "a": 16})] + \
# [(NS2D_LidDriven, {"datapath": "ref/lid_driven_a32.dat", "a": 32})] + \
# [(Wave1D, {"a": 2})] + \
# [(Wave1D, {"a": 6})] + \
# [(Wave1D, {"a": 8})] + \
# [(Wave1D, {"a": 10})] + \
# [(HeatND, {"dim": 4})] + \
# [(HeatND, {"dim": 6})] + \
# [(HeatND, {"dim": 8})] + \
# [(HeatND, {"dim": 10})]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PINNBench trainer')
parser.add_argument('--name', type=str, default="benchmark")
parser.add_argument('--device', type=str, default="0") # set to "cpu" enables cpu training
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--hidden-layers', type=str, default="100*5")
parser.add_argument('--loss-weight', type=str, default="")
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--iter', type=int, default=20000)
parser.add_argument('--log-every', type=int, default=100)
parser.add_argument('--plot-every', type=int, default=2000)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--method', type=str, default="adam")
command_args = parser.parse_args()
seed = command_args.seed
if seed is not None:
dde.config.set_random_seed(seed)
date_str = time.strftime('%m.%d-%H.%M.%S', time.localtime())
trainer = Trainer(f"{date_str}-{command_args.name}", command_args.device)
for pde_config in pde_list:
def get_model_dde():
if isinstance(pde_config, tuple):
pde = pde_config[0](**pde_config[1])
else:
pde = pde_config()
# pde.training_points()
if command_args.method == "gepinn":
pde.use_gepinn()
net = dde.nn.FNN([pde.input_dim] + parse_hidden_layers(command_args) + [pde.output_dim], "tanh", "Glorot normal")
if command_args.method == "laaf":
net = DNN_LAAF(len(parse_hidden_layers(command_args)) - 1, parse_hidden_layers(command_args)[0], pde.input_dim, pde.output_dim)
elif command_args.method == "gaaf":
net = DNN_GAAF(len(parse_hidden_layers(command_args)) - 1, parse_hidden_layers(command_args)[0], pde.input_dim, pde.output_dim)
net = net.float()
loss_weights = parse_loss_weight(command_args)
if loss_weights is None:
loss_weights = np.ones(pde.num_loss)
else:
loss_weights = np.array(loss_weights)
opt = torch.optim.Adam(net.parameters(), command_args.lr)
if command_args.method == "multiadam":
opt = MultiAdam(net.parameters(), lr=1e-3, betas=(0.99, 0.99), loss_group_idx=[pde.num_pde])
elif command_args.method == "lra":
opt = LR_Adaptor(opt, loss_weights, pde.num_pde)
elif command_args.method == "ntk":
opt = LR_Adaptor_NTK(opt, loss_weights, pde)
elif command_args.method == "lbfgs":
opt = Adam_LBFGS(net.parameters(), switch_epoch=5000, adam_param={'lr':command_args.lr})
model = pde.create_model(net)
model.compile(opt, loss_weights=loss_weights)
if command_args.method == "rar":
model.train = rar_wrapper(pde, model, {"interval": 1000, "count": 1})
# the trainer calls model.train(**train_args)
return model
def get_model_others():
model = None
# create a model object which support .train() method, and param @model_save_path is required
# create the object based on command_args and return it to be trained
# schedule the task using trainer.add_task(get_model_other, {training args})
return model
trainer.add_task(
get_model_dde, {
"iterations": command_args.iter,
"display_every": command_args.log_every,
"callbacks": [
TesterCallback(log_every=command_args.log_every),
PlotCallback(log_every=command_args.plot_every, fast=True),
LossCallback(verbose=True),
]
}
)
trainer.setup(__file__, seed)
trainer.set_repeat(command_args.repeat)
trainer.train_all()
trainer.summary()