-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
224 lines (190 loc) · 9.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# /usr/bin/env python
# coding=utf-8
"""train with valid"""
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
import torch
from transformers import BertConfig
import random
import logging
from tqdm import trange
import argparse
import utils
from optimization import BertAdam
from evaluate import evaluate
from dataloader import CustomDataLoader
from model import BertForRE
# load args
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=2020, help="random seed for initialization")
parser.add_argument('--ex_index', type=str, default=1)
parser.add_argument('--corpus_type', type=str, default="NYT", help="NYT, WebNLG, NYT*, WebNLG*")
parser.add_argument('--device_id', type=int, default=0, help="GPU index")
parser.add_argument('--epoch_num', required=True, type=int, help="number of epochs")
parser.add_argument('--multi_gpu', action='store_true', help="ensure multi-gpu training")
parser.add_argument('--restore_file', default=None, help="name of the file containing weights to reload")
parser.add_argument('--corres_threshold', type=float, default=0.5, help="threshold of global correspondence")
parser.add_argument('--rel_threshold', type=float, default=0.5, help="threshold of relation judgement")
parser.add_argument('--ensure_corres', action='store_true', help="correspondence ablation")
parser.add_argument('--ensure_rel', action='store_true', help="relation judgement ablation")
parser.add_argument('--emb_fusion', type=str, default="concat", help="way to embedding")
parser.add_argument('--num_negs', type=int, default=4,
help="number of negative sample when ablate relation judgement")
def train(model, data_iterator, optimizer, params, ex_params):
"""Train the model one epoch
"""
# set model to training mode
model.train()
loss_avg = utils.RunningAverage()
loss_avg_seq = utils.RunningAverage()
loss_avg_mat = utils.RunningAverage()
loss_avg_rel = utils.RunningAverage()
# Use tqdm for progress bar
# one epoch
t = trange(len(data_iterator), ascii=True)
for step, _ in enumerate(t):
# fetch the next training batch
batch = next(iter(data_iterator))
batch = tuple(t.to(params.device) for t in batch)
input_ids, attention_mask, seq_tags, relations, corres_tags, rel_tags = batch
# compute model output and loss
loss, loss_seq, loss_mat, loss_rel = model(input_ids, attention_mask=attention_mask, seq_tags=seq_tags,
potential_rels=relations, corres_tags=corres_tags, rel_tags=rel_tags,
ex_params=ex_params)
if params.n_gpu > 1 and args.multi_gpu:
loss = loss.mean() # mean() to average on multi-gpu.
if params.gradient_accumulation_steps > 1:
loss = loss / params.gradient_accumulation_steps
# back-prop
loss.backward()
if (step + 1) % params.gradient_accumulation_steps == 0:
# performs updates using calculated gradients
optimizer.step()
model.zero_grad()
# update the average loss
loss_avg.update(loss.item() * params.gradient_accumulation_steps)
loss_avg_seq.update(loss_seq.item())
loss_avg_mat.update(loss_mat.item())
loss_avg_rel.update(loss_rel.item())
# 右边第一个0为填充数,第二个5为数字个数为5位,第三个3为小数点有效数为3,最后一个f为数据类型为float类型。
t.set_postfix(loss='{:05.3f}'.format(loss_avg()),
loss_seq='{:05.3f}'.format(loss_avg_seq()),
loss_mat='{:05.3f}'.format(loss_avg_mat()),
loss_rel='{:05.3f}'.format(loss_avg_rel()))
def train_and_evaluate(model, params, ex_params, restore_file=None):
"""Train the model and evaluate every epoch."""
# Load training data and val data
dataloader = CustomDataLoader(params)
train_loader = dataloader.get_dataloader(data_sign='train', ex_params=ex_params)
val_loader = dataloader.get_dataloader(data_sign='val', ex_params=ex_params)
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = os.path.join(params.model_dir, args.restore_file + '.pth.tar')
logging.info("Restoring parameters from {}".format(restore_path))
# 读取checkpoint
model, optimizer = utils.load_checkpoint(restore_path)
model.to(params.device)
# parallel model
if params.n_gpu > 1 and args.multi_gpu:
model = torch.nn.DataParallel(model)
# Prepare optimizer
# fine-tuning
param_optimizer = list(model.named_parameters())
# pretrain model param
param_pre = [(n, p) for n, p in param_optimizer if 'bert' in n]
# downstream model param
param_downstream = [(n, p) for n, p in param_optimizer if 'bert' not in n]
no_decay = ['bias', 'LayerNorm', 'layer_norm']
optimizer_grouped_parameters = [
# pretrain model param
{'params': [p for n, p in param_pre if not any(nd in n for nd in no_decay)],
'weight_decay': params.weight_decay_rate, 'lr': params.fin_tuning_lr
},
{'params': [p for n, p in param_pre if any(nd in n for nd in no_decay)],
'weight_decay': 0.0, 'lr': params.fin_tuning_lr
},
# downstream model
{'params': [p for n, p in param_downstream if not any(nd in n for nd in no_decay)],
'weight_decay': params.weight_decay_rate, 'lr': params.downs_en_lr
},
{'params': [p for n, p in param_downstream if any(nd in n for nd in no_decay)],
'weight_decay': 0.0, 'lr': params.downs_en_lr
}
]
num_train_optimization_steps = len(train_loader) // params.gradient_accumulation_steps * args.epoch_num
optimizer = BertAdam(optimizer_grouped_parameters, warmup=params.warmup_prop, schedule="warmup_cosine",
t_total=num_train_optimization_steps, max_grad_norm=params.clip_grad)
# patience stage
best_val_f1 = 0.0
patience_counter = 0
for epoch in range(1, args.epoch_num + 1):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch, args.epoch_num))
# Train for one epoch on training set
train(model, train_loader, optimizer, params, ex_params)
# Evaluate for one epoch on training set and validation set
# train_metrics = evaluate(args, model, train_loader, params, mark='Train',
# verbose=True) # Dict['loss', 'f1']
val_metrics, _, _ = evaluate(model, val_loader, params, ex_params, mark='Val')
val_f1 = val_metrics['f1']
improve_f1 = val_f1 - best_val_f1
# Save weights of the network
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
optimizer_to_save = optimizer
utils.save_checkpoint({'epoch': epoch + 1,
'model': model_to_save,
'optim': optimizer_to_save},
is_best=improve_f1 > 0,
checkpoint=params.model_dir)
params.save(params.ex_dir / 'params.json')
# stop training based params.patience
if improve_f1 > 0:
logging.info("- Found new best F1")
best_val_f1 = val_f1
if improve_f1 < params.patience:
patience_counter += 1
else:
patience_counter = 0
else:
patience_counter += 1
# Early stopping and logging best f1
if (patience_counter > params.patience_num and epoch > params.min_epoch_num) or epoch == args.epoch_num:
logging.info("Best val f1: {:05.2f}".format(best_val_f1))
break
if __name__ == '__main__':
args = parser.parse_args()
params = utils.Params(args.ex_index, args.corpus_type)
ex_params = {
'ensure_corres': args.ensure_corres,
'ensure_rel': args.ensure_rel,
'num_negs': args.num_negs,
'emb_fusion': args.emb_fusion
}
if args.multi_gpu:
params.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
params.n_gpu = n_gpu
else:
torch.cuda.set_device(args.device_id)
print('current device:', torch.cuda.current_device())
params.n_gpu = n_gpu = 1
# Set the random seed for reproducible experiments
random.seed(args.seed)
torch.manual_seed(args.seed)
params.seed = args.seed
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# Set the logger
utils.set_logger(save=True, log_path=os.path.join(params.ex_dir, 'train.log'))
logging.info(f"Model type:")
logging.info("device: {}".format(params.device))
logging.info('Load pre-train model weights...')
bert_config = BertConfig.from_json_file(os.path.join(params.bert_model_dir, 'bert_config.json'))
model = BertForRE.from_pretrained(config=bert_config,
pretrained_model_name_or_path=params.bert_model_dir,
params=params)
logging.info('-done')
# Train and evaluate the model
logging.info("Starting training for {} epoch(s)".format(args.epoch_num))
train_and_evaluate(model, params, ex_params, args.restore_file)