-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_cifar10_large_batch.py
458 lines (375 loc) · 20 KB
/
main_cifar10_large_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import logging
import time
import models
from vgg import *
#import models
from lowrank_vgg import LowRankVGG, FullRankVGG, FullRankVGG19, LowRankVGG19, LowRankVGG19NonSquare
from resnet_cifar10 import *
from warmup_scheduler import GradualWarmupScheduler
from torch.optim import lr_scheduler
from ptflops import get_model_complexity_info
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
# helper function because otherwise non-empty strings
# evaluate as True
def bool_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
# we track the norm of the model weights:
def norm_calculator(model):
model_norm = 0
for param_index, param in enumerate(model.parameters()):
model_norm += torch.norm(param) ** 2
return torch.sqrt(model_norm).item()
def param_counter(model):
num_params = 0
for param_index, (param_name, param) in enumerate(model.named_parameters()):
num_params += param.numel()
return num_params
def decompose_weights(model, low_rank_model, rank_factor, args):
# SVD version
reconstructed_aggregator = []
if args.arch == "vgg19":
for item_index, (param_name, param) in enumerate(model.state_dict().items()):
if len(param.size()) == 4 and item_index not in range(0, 54):
# resize --> svd --> two layer
param_reshaped = param.view(param.size()[0], -1)
rank = min(param_reshaped.size()[0], param_reshaped.size()[1])
u, s, v = torch.svd(param_reshaped)
sliced_rank = int(rank/rank_factor)
u_weight = u * torch.sqrt(s)
v_weight = torch.sqrt(s) * v
u_weight_sliced, v_weight_sliced = u_weight[:, 0:sliced_rank], v_weight[:, 0:sliced_rank]
u_weight_sliced_shape, v_weight_sliced_shape = u_weight_sliced.size(), v_weight_sliced.size()
model_weight_v = u_weight_sliced.view(u_weight_sliced_shape[0],
u_weight_sliced_shape[1], 1, 1)
model_weight_u = v_weight_sliced.t().view(v_weight_sliced_shape[1],
param.size()[1],
param.size()[2],
param.size()[3])
reconstructed_aggregator.append(model_weight_u)
reconstructed_aggregator.append(model_weight_v)
elif len(param.size()) == 2 and "classifier." in param_name and "classifier.6." not in param_name:
print(param_name, param.size())
rank = min(param.size()[0], param.size()[1])
u, s, v = torch.svd(param)
sliced_rank = int(rank/rank_factor)
u_weight = u * torch.sqrt(s)
v_weight = torch.sqrt(s) * v
u_weight_sliced, v_weight_sliced = u_weight[:, 0:sliced_rank], v_weight[:, 0:sliced_rank]
model_weight_v = u_weight_sliced
model_weight_u = v_weight_sliced.t()
reconstructed_aggregator.append(model_weight_u)
reconstructed_aggregator.append(model_weight_v)
else:
reconstructed_aggregator.append(param)
model_counter = 0
reload_state_dict = {}
for item_index, (param_name, param) in enumerate(low_rank_model.state_dict().items()):
#print("#### {}, {}, recons agg: {}, param: {}".format(item_index, param_name,
# reconstructed_aggregator[model_counter].size(),
# param.size()))
assert (reconstructed_aggregator[model_counter].size() == param.size())
reload_state_dict[param_name] = reconstructed_aggregator[model_counter]
model_counter += 1
elif args.arch == "resnet18":
for item_index, (param_name, param) in enumerate(model.state_dict().items()):
if len(param.size()) == 4 and item_index not in range(0, 13) and ".shortcut." not in param_name:
# resize --> svd --> two layer
param_reshaped = param.view(param.size()[0], -1)
rank = min(param_reshaped.size()[0], param_reshaped.size()[1])
u, s, v = torch.svd(param_reshaped)
sliced_rank = int(rank/rank_factor)
u_weight = u * torch.sqrt(s)
v_weight = torch.sqrt(s) * v
u_weight_sliced, v_weight_sliced = u_weight[:, 0:sliced_rank], v_weight[:, 0:sliced_rank]
u_weight_sliced_shape, v_weight_sliced_shape = u_weight_sliced.size(), v_weight_sliced.size()
model_weight_v = u_weight_sliced.view(u_weight_sliced_shape[0],
u_weight_sliced_shape[1], 1, 1)
model_weight_u = v_weight_sliced.t().view(v_weight_sliced_shape[1],
param.size()[1],
param.size()[2],
param.size()[3])
reconstructed_aggregator.append(model_weight_u)
reconstructed_aggregator.append(model_weight_v)
else:
reconstructed_aggregator.append(param)
model_counter = 0
reload_state_dict = {}
for item_index, (param_name, param) in enumerate(low_rank_model.state_dict().items()):
#print("#### {}, {}, recons agg: {}, param: {}".format(item_index, param_name,
# reconstructed_aggregator[model_counter].size(),
# param.size()))
assert (reconstructed_aggregator[model_counter].size() == param.size())
reload_state_dict[param_name] = reconstructed_aggregator[model_counter]
model_counter += 1
else:
raise NotImplementedError("Unsupported model arch ...")
low_rank_model.load_state_dict(reload_state_dict)
return low_rank_model
def train(train_loader, model, criterion, optimizer, epoch, device):
model.train()
epoch_timer = 0
for batch_idx, (data, target) in enumerate(train_loader):
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
#torch.cuda.synchronize()
#iter_comp_start = time.time()
iter_start.record()
output = model(data)
loss = criterion(output, target)
#torch.cuda.synchronize()
#forward_dur = time.time() - iter_comp_start
#torch.cuda.synchronize()
#backward_start = time.time()
loss.backward()
#torch.cuda.synchronize()
#backward_dur = time.time() - backward_start
optimizer.step()
iter_end.record()
#torch.cuda.synchronize()
#iter_comp_dur = time.time() - iter_comp_start
torch.cuda.synchronize()
iter_comp_dur = float(iter_start.elapsed_time(iter_end))/1000.0
epoch_timer += iter_comp_dur
if batch_idx % 40 == 0:
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)] Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
return epoch_timer
def validate(test_loader, model, criterion, epoch, device):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(F.log_softmax(output), target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
logger.info('\nEpoch: {}, Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(epoch,
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--mode', type=str, default='vanilla',
help='use full rank or low rank models')
parser.add_argument('--batch-size', type=int, default=2048, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=300, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--full-rank-warmup', type=bool_string, default=True,
help='if or not to use full-rank warmup')
parser.add_argument('--fr-warmup-epoch', type=int, default=15,
help='number of full rank epochs to use')
parser.add_argument('-rf', '--rank-factor', default=4, type=int,
metavar='N', help='the rank factor that is going to use in the low rank models')
args = parser.parse_args()
torch.manual_seed(args.seed)
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
logger.info("Benchmarking over device: {}".format(device))
# let's enable cudnn benchmark
cudnn.benchmark = True
normalize = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(
Variable(x.unsqueeze(0), requires_grad=False),
(4,4,4,4),mode='reflect').data.squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
# data prep for test set
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize])
# load training and test set here:
training_set = datasets.CIFAR10(root='./cifar10_data', train=True,
download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(training_set, batch_size=args.batch_size,
shuffle=True)
testset = datasets.CIFAR10(root='./cifar10_data', train=False,
download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size,
shuffle=False)
#model = vgg11_bn().to(device)
#model = LowRankVGG().to(device)
#model = models.resnet50(num_classes=10).to(device)
#model = models.__dict__[args.arch](num_classes=10).to(device)
#model = LowRankResNet18().to(device)
lr_warmup_epoch = 5
lr_decay_period = (150, 250)
lr_decay_gamma = 0.1
lr_warmup_multiplier = 16
if args.arch == "resnet18":
if args.mode == "vanilla":
model = ResNet18().to(device)
elif args.mode == "lowrank":
model = LowrankResNet18().to(device)
vanilla_model = ResNet18().to(device)
else:
raise NotImplementedError("unsupported mode ...")
elif args.arch == "vgg19":
if args.mode == "vanilla":
model = FullRankVGG19().to(device)
elif args.mode == "lowrank":
model = LowRankVGG19().to(device)
vanilla_model = FullRankVGG19().to(device)
else:
raise NotImplementedError("unsupported mode ...")
with torch.cuda.device(0):
lowrank_macs, lowrank_params = get_model_complexity_info(model, (3, 32, 32), as_strings=True,
print_per_layer_stat=True, verbose=True)
vanilla_macs, vanilla_params = get_model_complexity_info(vanilla_model, (3, 32, 32), as_strings=True,
print_per_layer_stat=True, verbose=True)
logger.info("============> Lowrank Model info: {}, num params: {}, Macs: {}".format(model, param_counter(model), lowrank_macs))
logger.info("============> Vanilla Model info: {}, num params: {}, Macs: {}".format(vanilla_model, param_counter(vanilla_model), vanilla_macs))
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=1e-4)
scheduler_multi_step_lowrank = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[e - args.fr_warmup_epoch - 1 for e in lr_decay_period],
gamma=lr_decay_gamma)
vanilla_optimizer = torch.optim.SGD(vanilla_model.parameters(), args.lr,
momentum=args.momentum, weight_decay=1e-4)
scheduler_multi_step_vanilla = torch.optim.lr_scheduler.MultiStepLR(vanilla_optimizer,
milestones=[e - lr_warmup_epoch - 1 for e in lr_decay_period],
gamma=lr_decay_gamma)
scheduler_warmup_vanilla = GradualWarmupScheduler(vanilla_optimizer,
multiplier=lr_warmup_multiplier,
total_epoch=lr_warmup_epoch,
after_scheduler=scheduler_multi_step_vanilla)
# switching off the weight decay for batch norm layers
#parameters = add_weight_decay(model, 0.0001)
#weight_decay = 0.
# optimizer = torch.optim.SGD(parameters, args.lr,
# momentum=args.momentum,
# #weight_decay=args.weight_decay)
# weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
init_lr = args.lr
epoch_norm = norm_calculator(model)
logger.info("###### Norm of the Model in Epoch: {}, is: {}".format(0, epoch_norm))
for epoch in range(1, args.epochs + 1):
# adjusting lr schedule
# if epoch < 150:
# for group in optimizer.param_groups:
# group['lr'] = init_lr
# for group in vanilla_optimizer.param_groups:
# group['lr'] = init_lr
# elif (epoch >= 150 and epoch < 250):
# for group in optimizer.param_groups:
# group['lr'] = init_lr/10.0
# for group in vanilla_optimizer.param_groups:
# group['lr'] = init_lr/10.0
# elif epoch >= 250:
# for group in optimizer.param_groups:
# group['lr'] = init_lr/100.0
# for group in vanilla_optimizer.param_groups:
# group['lr'] = init_lr/100.0
if epoch in range(args.fr_warmup_epoch):
for group in vanilla_optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
else:
for group in optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
if args.full_rank_warmup and epoch in range(args.fr_warmup_epoch):
logger.info("Epoch: {}, Warmuping ...".format(epoch))
epoch_time = train(train_loader, vanilla_model, criterion, vanilla_optimizer, epoch, device=device)
scheduler_warmup_vanilla.step()
elif args.full_rank_warmup and epoch == args.fr_warmup_epoch:
logger.info("Epoch: {}, swtiching to low rank model ...".format(epoch))
torch.cuda.synchronize()
decompose_start = time.time()
model = decompose_weights(model=vanilla_model,
low_rank_model=model,
rank_factor=args.rank_factor,
args=args)
torch.cuda.synchronize()
decompose_dur = time.time() - decompose_start
logger.info("#### Cost for decomposing the weights: {} ....".format(decompose_dur))
optimizer = optim.SGD(model.parameters(), lr=args.lr*lr_warmup_multiplier, momentum=args.momentum, weight_decay=1e-4)
scheduler_multi_step_lowrank = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[e - args.fr_warmup_epoch - 1 for e in lr_decay_period],
gamma=lr_decay_gamma)
#optimizer = optim.SGD(model.parameters(), lr=(args.lr/2), momentum=args.momentum, weight_decay=1e-4)
#init_lr = args.lr/2
epoch_time = train(train_loader, model, criterion, optimizer, epoch, device=device)
scheduler_multi_step_lowrank.step()
else:
logger.info("Epoch: {}, low rank training ...".format(epoch))
epoch_time = train(train_loader, model, criterion, optimizer, epoch, device=device)
scheduler_multi_step_lowrank.step()
logger.info("####### Time Cost for Epoch: {} is {}".format(epoch, epoch_time))
# eval
if args.full_rank_warmup and epoch in range(args.fr_warmup_epoch):
# validate(test_loader, model, criterion, epoch, device)
validate(
test_loader=test_loader,
model=vanilla_model,
criterion=criterion,
epoch=epoch,
device=device)
else:
validate(
test_loader=test_loader,
model=model,
criterion=criterion,
epoch=epoch,
device=device)
epoch_norm = norm_calculator(model)
logger.info("###### Norm of the Model in Epoch: {}, is: {}".format(epoch, epoch_norm))
# we save the final model for future use
#with open("trained_model_resnet18", "wb") as f_:
# torch.save(model.state_dict(), f_)
if __name__ == '__main__':
main()