-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
52 lines (41 loc) · 1.73 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#coding=utf-8
import numpy as np
import config
import pickle
import time
class DataLoader(object):
def __init__(self, source_file, target_file, epochs, batch, mode="train"):
self.source_file = source_file
self.target_file = target_file
self.epochs = epochs
self.batch = batch
self.mode = mode
def prepare_data(self):
with open(self.source_file, 'rb') as f:
x_set = pickle.load(f)
with open(self.target_file, 'rb') as f:
y_set = pickle.load(f)
x_lens = [len(sentence) for sentence in x_set]
y_lens = [len(sentence) for sentence in y_set]
return x_set, y_set, x_lens, y_lens
def data_iter(self):
epochs, batch_size = self.epochs, self.batch
print("batch size is %d" % self.batch)
x_set, y_set, x_lens, y_lens = self.prepare_data()
pos, num_sentence = 0, len(x_lens)
print("iter num per epoch =", num_sentence/batch_size)
for e in range(epochs):
if self.mode == 'train':
print("epochs = ", e)
while batch_size + pos < num_sentence:
batch_x_lens = x_lens[pos: batch_size+pos]
batch_y_lens = y_lens[pos: batch_size+pos]
max_len_x, max_len_y = max(batch_x_lens), max(batch_y_lens)
x = np.ones((batch_size, max_len_x)).astype('int32') * config._EOS
y = np.ones((batch_size, max_len_y)).astype('int32') * config._EOS
for i in range(batch_size):
x[i, :batch_x_lens[i]] = x_set[pos+i]
y[i, :batch_y_lens[i]] = y_set[pos+i]
yield x, batch_x_lens, y, batch_y_lens
pos += batch_size
pos = 0