-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_stage0.py
327 lines (254 loc) · 11.1 KB
/
main_stage0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import re
import argparse
import os
import shutil
import time
import math
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler
import torchvision.datasets
import pdb
from mean_teacher import architectures, datasets, data, losses, ramps, cli
from mean_teacher.run_context import RunContext
from mean_teacher.data import NO_LABEL
from mean_teacher.utils import *
from mean_teacher.resnet import resnet50
from mean_teacher.functions_initial import *
LOG = logging.getLogger('main')
args = None
best_prec1 = 0
global_step = 0
def main(context):
global global_step
global best_prec1
dirpath = args.checkpoint_path
os.makedirs(dirpath, exist_ok=True)
dataset_config = datasets.__dict__[args.dataset]()
num_classes = dataset_config.pop('num_classes')
train_loader, eval_loader = create_data_loaders(**dataset_config, args=args)
def create_model(ema=False):
LOG.info("=> creating {pretrained}{ema}model '{arch}'".format(
pretrained='pre-trained ' if args.pretrained else '',
ema='EMA ' if ema else '',
arch=args.arch))
model_factory = architectures.__dict__[args.arch]
model_params = dict(pretrained=args.pretrained, num_classes=num_classes)
model = model_factory(**model_params)
model = nn.DataParallel(model).cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
# optionally resume from a checkpoint
if args.resume:
assert os.path.isfile(args.resume), "=> no checkpoint found at '{}'".format(args.resume)
LOG.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
global_step = checkpoint['global_step']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
ema_model.load_state_dict(checkpoint['ema_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
LOG.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
cudnn.benchmark = True
if args.evaluate:
LOG.info("Evaluating the primary model:")
validate(eval_loader, model)
LOG.info("Evaluating the EMA model:")
validate(eval_loader, ema_model)
return
for epoch in range(args.start_epoch, args.epochs):
print('EPOCH:', epoch)
start_time = time.time()
# train for one epoch
train(train_loader, model, ema_model, optimizer, epoch)
LOG.info("Evaluating the primary model:")
prec1 = validate(eval_loader, model)
print('accuracy', prec1)
LOG.info("Evaluating the EMA model:")
ema_prec1 = validate(eval_loader, ema_model)
print('ema_accuracy', ema_prec1)
# LOG.info("--- validation in %s seconds ---" % (time.time() - start_time))
is_best = ema_prec1 > best_prec1
best_prec1 = max(ema_prec1, best_prec1)
if args.checkpoint_epochs and (epoch + 1) % args.checkpoint_epochs == 0:
save_checkpoint({
'epoch': epoch + 1,
'global_step': global_step,
'arch': args.arch,
'state_dict': model.state_dict(),
'ema_state_dict': ema_model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, dirpath, epoch + 1)
def read_dataset_initial(dataset, num):
data_dict = {}
#dataset = torchvision.datasets.cifar100
for idx in range(len(dataset.imgs)):
path, label = dataset.imgs[idx]
if label in data_dict.keys():
data_dict[label].append(idx)
else:
data_dict[label] = [idx]
data_selected = np.array(list(data_dict.values()))
#print(data_selected.shape)
labeled_data = []
for elem in data_selected:
labeled_data.append(np.array(elem[:num]))
return np.concatenate(labeled_data)
def parse_dict_args(**kwargs):
global args
def to_cmdline_kwarg(key, value):
if len(key) == 1:
key = "-{}".format(key)
else:
key = "--{}".format(re.sub(r"_", "-", key))
value = str(value)
return key, value
kwargs_pairs = (to_cmdline_kwarg(key, value)
for key, value in kwargs.items())
cmdline_args = list(sum(kwargs_pairs, ()))
args = parser.parse_args(cmdline_args)
def create_data_loaders(train_transformation,
eval_transformation,
args):
traindir = args.train_subdir
testdir = args.test_subdir
assert_exactly_one([args.exclude_unlabeled, args.labeled_batch_size])
dataset = torchvision.datasets.ImageFolder(traindir, train_transformation)
#dir_path = '/cache/index_cifar100/rand_select/'
labeled_idxs = read_dataset_initial(dataset, 30)
labeled_idxs, unlabeled_idxs = data.relabel_dataset_initial(dataset, labeled_idxs)
if args.exclude_unlabeled:
sampler = SubsetRandomSampler(labeled_idxs)
batch_sampler = BatchSampler(sampler, args.batch_size, drop_last=True)
elif args.labeled_batch_size:
batch_sampler = data.TwoStreamBatchSampler(
unlabeled_idxs, labeled_idxs, args.batch_size, args.labeled_batch_size)
else:
assert False, "labeled batch size {}".format(args.labeled_batch_size)
train_loader = torch.utils.data.DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(testdir, eval_transformation),
batch_size=200,
shuffle=False,
num_workers=2 * args.workers,
pin_memory=True,
drop_last=False)
return train_loader, test_loader
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def train(train_loader, model, ema_model, optimizer, epoch):
global global_step
class_criterion = nn.CrossEntropyLoss(size_average=False, ignore_index=NO_LABEL).cuda()
if args.consistency_type == 'mse':
consistency_criterion = losses.softmax_mse_loss
elif args.consistency_type == 'kl':
consistency_criterion = losses.softmax_kl_loss
else:
assert False, args.consistency_type
residual_logit_criterion = losses.symmetric_mse_loss
# switch to train mode
model.train()
ema_model.train()
for i, ((input, ema_input), target) in enumerate(train_loader):
adjust_learning_rate(optimizer, epoch, i, len(train_loader))
input_var = input.cuda()
with torch.no_grad():
ema_input_var = ema_input.cuda()
target_var = target.cuda()
minibatch_size = len(target_var)
labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()
assert labeled_minibatch_size > 0
ema_logit, _, _ = ema_model(ema_input_var)
class_logit, cons_logit, _ = model(input_var)
ema_logit = Variable(ema_logit.detach().data, requires_grad=False)
if args.logit_distance_cost >= 0:
res_loss = args.logit_distance_cost * residual_logit_criterion(class_logit, cons_logit) / minibatch_size
else:
res_loss = 0
class_loss = class_criterion(class_logit, target_var) / minibatch_size
if args.consistency:
consistency_weight = get_current_consistency_weight(epoch)
consistency_loss = consistency_weight * consistency_criterion(cons_logit, ema_logit) / minibatch_size
else:
consistency_loss = 0
loss = class_loss + consistency_loss + res_loss
if loss.item() > 1e5:
print(class_loss.item(), consistency_loss.item(), res_loss.item())
assert not (np.isnan(loss.item()) or loss.item() > 1e5), 'Loss explosion: {}'.format(loss.item())
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
update_ema_variables(model, ema_model, args.ema_decay, global_step)
def validate(eval_loader, model):
meters = AverageMeterSet()
# switch to evaluate mode
model.eval()
end = time.time()
iter_num, prec = 0, 0
for i, (input, target) in enumerate(eval_loader):
meters.update('data_time', time.time() - end)
with torch.no_grad():
input_var = input.cuda()
target_var = target
# minibatch_size = len(target_var)
labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()
assert labeled_minibatch_size > 0
# compute output
output1, output2, _ = model(input_var)
prec += accuracy(output1.data.cpu(), target_var.data)
iter_num += 1
return prec / iter_num
def save_checkpoint(state, is_best, dirpath, epoch):
filename = 'checkpoint.ckpt'
# print(dirpath, filename)
checkpoint_path = os.path.join(dirpath, filename)
best_path = os.path.join(dirpath, 'best_initial.ckpt')
torch.save(state, checkpoint_path)
if is_best:
shutil.copyfile(checkpoint_path, best_path)
def adjust_learning_rate(optimizer, epoch, step_in_epoch, total_steps_in_epoch):
lr = args.lr
epoch = epoch + step_in_epoch / total_steps_in_epoch
# LR warm-up to handle large minibatch sizes from https://arxiv.org/abs/1706.02677
lr = ramps.linear_rampup(epoch, args.lr_rampup) * (args.lr - args.initial_lr) + args.initial_lr
# Cosine LR rampdown from https://arxiv.org/abs/1608.03983 (but one cycle only)
if args.lr_rampdown_epochs:
assert args.lr_rampdown_epochs >= args.epochs
lr *= ramps.cosine_rampdown(epoch, args.lr_rampdown_epochs)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_rampup)
def accuracy(output, target):
_, prediction = torch.max(output, dim=1)
acc = np.sum(prediction.numpy() == target.numpy()) / len(target)
return acc
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
args = cli.parse_commandline_args()
main(RunContext(__file__, 0))