-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
214 lines (167 loc) · 7.01 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 4 14:16:26 2016
@author: hrs13
"""
import numpy as np
import scipy.stats as stats
from scipy.special import gamma
d = lambda i, j, X, mus: np.sum((X[i, :] - mus[j, :])**2)
def squared_distances(X, mus):
N, D = X.shape
K, D = mus.shape
return np.reshape([d(i, j, X, mus) for i in range(N) for j in range(K)], (N, K))
def perp_bisector(a, b):
mid_point = 0.5*(a + b)
grad = -(a[0] - b[0])/(a[1] - b[1])
return grad, (mid_point[1] - grad*mid_point[0])
def generate_parameters(K, priors=None):
if priors is None:
a_0 = 10. # larger makes the mixing coefficients more similar
b_0 = 1. # larger makes the clusters closer to the origin
W_0 = np.eye(2) # 2D, but would work just as well for higher dimensions
v_0 = 3. # this number being higher (min is 2) makes the clusters more irregular in shape
m_0 = np.zeros(2) # clusters to be around the origin
else:
a_0, b_0, m_0, W_0, v_0 = priors
Sigmas = stats.wishart.rvs(v_0, W_0, K)
mus = np.empty((K, 2))
for i in range(K):
mus[i, :] = stats.multivariate_normal.rvs(m_0, np.linalg.inv(b_0 * Sigmas[i]))
pis = stats.dirichlet.rvs(np.ones(K) * a_0).flatten()
return pis, mus, Sigmas
def log_B(W, v):
ret = (-v/2.)*np.log(np.linalg.det(W))
ret -= 2*np.log(2) + 0.5*np.log(np.pi) # 2D only
ret -= gamma(v/2) + gamma((v+1)/2) #2D only
return ret
def generate_data(N, parameters):
pis, mus, Sigmas = parameters
X = np.empty((N, 2))
Z = np.random.multinomial(1, pis.flatten(), N) # so we have a 1-of-N encoding for the class
for i in range(N):
z = int(np.where(Z[i, :] == 1)[0]) # the class number
X[i, :] = stats.multivariate_normal.rvs(mus[z, :], Sigmas[z, :, :])
return X, Z
def generate_rand_samples(a_k, b_k, m_k, W_k, v_k):
K = len(a_k)
Sigmas = np.empty((K, 2, 2))
mus = np.empty((K, 2))
for k in range(K):
Ls = stats.wishart.rvs(v_k[k], W_k[k])
Sigmas[k, :, :] = np.linalg.inv(Ls)
mus[k, :] = stats.multivariate_normal.rvs(m_k[k], np.linalg.inv(b_k[k] * Ls))
pis = stats.dirichlet.rvs(a_k).flatten()
return pis, mus, Sigmas
def interpolate(i, start, end, total):
p = float(i)/float(total)
return p * end + (1 - p) * start
def interpolate_wishart(i, L, start_z, end_z, total):
z = interpolate(i, start_z, end_z, total)
x = z.dot(L)
return x.T.dot(x)
def generate_samples_correlated_new(num_samples, a_k, b_k, m_k, W_k, v_k, init):
K = len(a_k)
Sigmas = np.empty((num_samples, K, 2, 2))
mus = np.empty((num_samples, K, 2))
pis = np.empty((num_samples, K))
df_max = np.floor(max(v_k))
dfs = np.floor(v_k)
Z_current = np.reshape(np.random.randn((df_max+1)*2*K), (K, df_max+1, 2))
pi_current = stats.dirichlet.rvs(a_k).flatten()
if init is not None:
Z_old, pi_current = init
old_df_max = Z_old.shape[1]-1
if df_max > old_df_max:
Z_current[:, :(old_df_max+1), :] = Z_old
Z_current[:, -1, :] = Z_old[:, -1, :]
else:
Z_current = Z_old
df_max = old_df_max
c = 0.995
s = (1-c**2)**0.5
L = np.empty((K, 2, 2))
for k in range(K):
L[k, :, :] = np.linalg.cholesky(W_k[k, :, :])
for i in range(num_samples):
Z_new = np.reshape(np.random.randn((df_max+1)*2*K), (K, df_max+1, 2))
pi_new = stats.dirichlet.rvs(a_k).flatten()
Z_current = c*Z_current + s*Z_new
# pi_current = abs(c*pi_current + s*(pi_new - a_k/sum(a_k)))
for k in range(K):
z = np.reshape(Z_current[k, :dfs[k], :], (dfs[k], 2))
x = z.dot(L[k, :, :])
W = x.T.dot(x)
Sigmas[i, k, :, :] = np.linalg.inv(W)
WL = np.linalg.cholesky(np.linalg.inv(b_k[k]*W))
mus[i, k, :] = m_k[k] + np.reshape(WL.dot(np.reshape(Z_current[k, df_max, :], (2, 1))), (2, ))
pis[i, :] = pi_new
out = Z_current, pi_current
return pis, mus, Sigmas, out
def generate_samples_correlated(num_samples, num_steps, a_k, b_k, m_k, W_k, v_k):
K = len(a_k)
Sigmas = np.empty((num_samples, num_steps, K, 2, 2))
mus = np.empty((num_samples, num_steps, K, 2))
pis = np.empty((num_samples, num_steps, K))
df_max = np.floor(max(v_k))
dfs = np.floor(v_k)
Z_current = np.reshape(np.random.randn((df_max+1)*2*K), (K, df_max+1, 2))
pi_current = stats.dirichlet.rvs(a_k).flatten()
L = np.empty((K, 2, 2))
for k in range(K):
L[k, :, :] = np.linalg.cholesky(W_k[k, :, :])
for i in range(num_samples):
Z_next = np.reshape(np.random.randn((df_max+1)*2*K), (K, df_max+1, 2))
pi_next = stats.dirichlet.rvs(a_k).flatten()
for j in range(num_steps):
for k in range(K):
z_c = Z_current[k, :dfs[k], :]
z_n = Z_next[k, :dfs[k], :]
W = interpolate_wishart(j, L[k], z_c, z_n, num_steps)
Sigmas[i, j, k, :, :] = np.linalg.inv(W)
for k in range(K):
start_L = np.linalg.cholesky(np.linalg.inv(b_k[k] * np.linalg.inv(Sigmas[i, 0, k, :, :])))
start_mu = m_k[k] + np.reshape(start_L.dot(Z_current[k, df_max, :]), (2, ))
end_L = np.linalg.cholesky(np.linalg.inv(b_k[k] * np.linalg.inv(Sigmas[i, num_steps-1, k, :, :])))
end_mu = m_k[k] + np.reshape(end_L.dot(Z_next[k, df_max, :]), (2, ))
for j in range(num_steps):
mus[i, j, k, :] = interpolate(j, start_mu, end_mu, num_steps)
for j in range(num_steps):
pis[i, j, :] = interpolate(i, pi_current, pi_next, num_steps)
Z_current = Z_next
pi_current = pi_next
return pis, mus, Sigmas
# for k in range(K):
# Ws = np.empty((num_steps, 2, 2))
#
# degs_freedom = np.floor(v_k[k])
#
# def Ws_unif_interpolated(i):
# return interpolate(i, wishart_uniforms_start, wishart_uniforms_end, num_steps)
#
#
#
# L = np.linalg.cholesky(W_k[k])
#
# x_start = Ws_unif_interpolated(0).dot(L.T)
# W_start = x_start.T.dot(x_start)
#
# x_end = Ws_unif_interpolated(num_steps).dot(L)
# W_end = x_start.T.dot(x_end)
#
# mu_start = stats.multivariate_normal.rvs(m_k[k], np.linalg.inv(b_k[k] * W_start))
# mu_end = stats.multivariate_normal.rvs(m_k[k], np.linalg.inv(b_k[k] * W_end))
#
# def mu_interpolated(i):
# return interpolate(i, mu_start, mu_end, num_steps)
#
# def pi_interpolated(i):
# return interpolate(i, pi_start, pi_end, num_steps)
#
#
# for i in range(num_steps):
# x = Ws_unif_interpolated(i).dot(L)
# Ws[i, :, :] = x.T.dot(x)
# Sigmas[i, k, :, :] = np.linalg.inv(x.T.dot(x))
# mus[i, k, :] = mu_interpolated(i)
#