-
Notifications
You must be signed in to change notification settings - Fork 27.5k
/
test_modeling_utils.py
executable file
·1623 lines (1315 loc) · 72.8 KB
/
test_modeling_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import glob
import json
import os
import os.path
import sys
import tempfile
import unittest
import unittest.mock as mock
import uuid
from pathlib import Path
import requests
from huggingface_hub import HfApi, HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from pytest import mark
from requests.exceptions import HTTPError
from transformers import (
AutoConfig,
AutoModel,
PretrainedConfig,
is_torch_available,
logging,
)
from transformers.testing_utils import (
TOKEN,
USER,
CaptureLogger,
TestCasePlus,
is_staging_test,
require_accelerate,
require_flax,
require_safetensors,
require_tf,
require_torch,
require_torch_accelerator,
require_torch_multi_accelerator,
require_usr_bin_time,
slow,
torch_device,
)
from transformers.utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from transformers.utils.import_utils import is_flax_available, is_tf_available, is_torchdynamo_available
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig # noqa E402
if is_torch_available():
import torch
from safetensors.torch import save_file as safe_save_file
from test_module.custom_modeling import CustomModel, NoSuperInitModel
from torch import nn
from transformers import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoModelForCausalLM,
AutoTokenizer,
BertConfig,
BertModel,
CLIPTextModel,
PreTrainedModel,
T5Config,
T5ForConditionalGeneration,
)
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_utils import shard_checkpoint
# Fake pretrained models for tests
class BaseModel(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.linear = nn.Linear(5, 5)
self.linear_2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear_2(self.linear(x))
class BaseModelWithTiedWeights(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.linear = nn.Linear(5, 5)
self.linear_2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear_2(self.linear(x))
def tie_weights(self):
self.linear_2.weight = self.linear.weight
class ModelWithHead(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def _init_weights(self, module):
pass
def __init__(self, config):
super().__init__(config)
self.base = BaseModel(config)
# linear is a common name between Base and Head on purpose.
self.linear = nn.Linear(5, 5)
self.linear2 = nn.Linear(5, 5)
def forward(self, x):
return self.linear2(self.linear(self.base(x)))
class ModelWithHeadAndTiedWeights(PreTrainedModel):
base_model_prefix = "base"
config_class = PretrainedConfig
def _init_weights(self, module):
pass
def __init__(self, config):
super().__init__(config)
self.base = BaseModel(config)
self.decoder = nn.Linear(5, 5)
def forward(self, x):
return self.decoder(self.base(x))
def tie_weights(self):
self.decoder.weight = self.base.linear.weight
if is_flax_available():
from transformers import FlaxBertModel
if is_tf_available():
from transformers import TFBertModel
TINY_T5 = "patrickvonplaten/t5-tiny-random"
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
def check_models_equal(model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
if model1_p.data.ne(model2_p.data).sum() > 0:
models_are_equal = False
return models_are_equal
@require_torch
class ModelUtilsTest(TestCasePlus):
@slow
def test_model_from_pretrained(self):
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
config = BertConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, PretrainedConfig)
model = BertModel.from_pretrained(model_name)
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, PreTrainedModel)
self.assertEqual(len(loading_info["missing_keys"]), 0)
self.assertEqual(len(loading_info["unexpected_keys"]), 8)
self.assertEqual(len(loading_info["mismatched_keys"]), 0)
self.assertEqual(len(loading_info["error_msgs"]), 0)
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
# Not sure this is the intended behavior. TODO fix Lysandre & Thom
config.name_or_path = model_name
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(model.config, config)
def test_model_from_pretrained_subfolder(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
model = BertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder))
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(tmp_dir)
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_subfolder_sharded(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
model = BertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(tmp_dir)
model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_hub_subfolder(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-subfolder"
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(model_id)
model = BertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_hub_subfolder_sharded(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
with self.assertRaises(OSError):
_ = BertModel.from_pretrained(model_id)
model = BertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_with_different_pretrained_model_name(self):
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
self.assertIsNotNone(model)
logger = logging.get_logger("transformers.configuration_utils")
with CaptureLogger(logger) as cl:
BertModel.from_pretrained(TINY_T5)
self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
def test_model_from_config_torch_dtype(self):
# test that the model can be instantiated with dtype of user's choice - as long as it's a
# float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
# model from the config object.
config = T5Config.from_pretrained(TINY_T5)
model = AutoModel.from_config(config)
# XXX: isn't supported
# model = T5ForConditionalGeneration.from_config(config)
self.assertEqual(model.dtype, torch.float32)
model = AutoModel.from_config(config, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
with self.assertRaises(ValueError):
model = AutoModel.from_config(config, torch_dtype=torch.int64)
def test_model_from_pretrained_torch_dtype(self):
# test that the model can be instantiated with dtype of either
# 1. explicit from_pretrained's torch_dtype argument
# 2. via autodiscovery by looking at model weights (torch_dtype="auto")
# so if a model.half() was saved, we want it to be instantiated as such.
#
# test an explicit model class, but also AutoModel separately as the latter goes through a different code path
model_path = self.get_auto_remove_tmp_dir()
# baseline - we know TINY_T5 is fp32 model
model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
self.assertEqual(model.dtype, torch.float32)
def remove_torch_dtype(model_path):
file = f"{model_path}/config.json"
with open(file, "r", encoding="utf-8") as f:
s = json.load(f)
s.pop("torch_dtype")
with open(file, "w", encoding="utf-8") as f:
json.dump(s, f)
# test the default fp32 save_pretrained => from_pretrained cycle
model.save_pretrained(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path)
self.assertEqual(model.dtype, torch.float32)
# 1. test torch_dtype="auto" via `config.torch_dtype`
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
# 2. test torch_dtype="auto" via auto-derivation
# now remove the torch_dtype entry from config.json and try "auto" again which should
# perform auto-derivation from weights
remove_torch_dtype(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
# test forced loading in fp16 (even though the weights are in fp32)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test fp16 save_pretrained, loaded with auto-detection
model = model.half()
model.save_pretrained(model_path)
# 1. test torch_dtype="auto" via `config.torch_dtype`
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.config.torch_dtype, torch.float16)
self.assertEqual(model.dtype, torch.float16)
# tests `config.torch_dtype` saving
with open(f"{model_path}/config.json") as f:
config_dict = json.load(f)
self.assertEqual(config_dict["torch_dtype"], "float16")
# 2. test torch_dtype="auto" via auto-derivation
# now same with using config info
remove_torch_dtype(model_path)
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float16)
# 3. now retest that AutoModel behaves the same wrt torch_dtype="auto" as T5ForConditionalGeneration
model = AutoModel.from_pretrained(model_path, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float16)
# test fp16 save_pretrained, loaded with the explicit fp16
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test AutoModel separately as it goes through a different path
# test auto-detection - as currently TINY_T5 doesn't have torch_dtype entry
model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
# test that the config object didn't get polluted with torch_dtype="auto"
# there was a bug that after this call we ended up with config.torch_dtype=="auto"
self.assertNotEqual(model.config.torch_dtype, "auto")
# now test the outcome
self.assertEqual(model.dtype, torch.float32)
model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
self.assertEqual(model.dtype, torch.float16)
# test model whose first param is not of a floating type, but int
model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
self.assertEqual(model.dtype, torch.float32)
def test_no_super_init_config_and_model(self):
config = NoSuperInitConfig(attribute=32)
model = NoSuperInitModel(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = NoSuperInitModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_shard_checkpoint(self):
# This is the model we will use, total size 340,000 bytes.
model = torch.nn.Sequential(
torch.nn.Linear(100, 200, bias=False), # size 80,000
torch.nn.Linear(200, 200, bias=False), # size 160,000
torch.nn.Linear(200, 100, bias=False), # size 80,000
torch.nn.Linear(100, 50, bias=False), # size 20,000
)
state_dict = model.state_dict()
with self.subTest("No shard when max size is bigger than model size"):
shards, index = shard_checkpoint(state_dict)
self.assertIsNone(index)
self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})
with self.subTest("Test sharding, no weights bigger than max size"):
shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
# Split is first two layers then last two.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"0.weight": "pytorch_model-00001-of-00002.bin",
"1.weight": "pytorch_model-00001-of-00002.bin",
"2.weight": "pytorch_model-00002-of-00002.bin",
"3.weight": "pytorch_model-00002-of-00002.bin",
},
},
)
shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
self.assertDictEqual(
shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
)
with self.subTest("Test sharding with weights bigger than max size"):
shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
# Split is first layer, second layer then last 2.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"0.weight": "pytorch_model-00001-of-00003.bin",
"1.weight": "pytorch_model-00002-of-00003.bin",
"2.weight": "pytorch_model-00003-of-00003.bin",
"3.weight": "pytorch_model-00003-of-00003.bin",
},
},
)
shard1 = {"0.weight": state_dict["0.weight"]}
shard2 = {"1.weight": state_dict["1.weight"]}
shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
self.assertDictEqual(
shards,
{
"pytorch_model-00001-of-00003.bin": shard1,
"pytorch_model-00002-of-00003.bin": shard2,
"pytorch_model-00003-of-00003.bin": shard3,
},
)
def test_checkpoint_sharding_local_bin(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
# We use the same folder for various sizes to make sure a new save erases the old checkpoint.
for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
model.save_pretrained(tmp_dir, max_shard_size=max_size, safe_serialization=False)
# Get each shard file and its size
shard_to_size = {}
for shard in os.listdir(tmp_dir):
if shard.endswith(".bin"):
shard_file = os.path.join(tmp_dir, shard)
shard_to_size[shard_file] = os.path.getsize(shard_file)
index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
# Check there is an index but no regular weight file
self.assertTrue(os.path.isfile(index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
# Check a file is bigger than max_size only when it has a single weight
for shard_file, size in shard_to_size.items():
if max_size.endswith("kiB"):
max_size_int = int(max_size[:-3]) * 2**10
else:
max_size_int = int(max_size[:-2]) * 10**3
# Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
# the size asked for (since we count parameters)
if size >= max_size_int + 50000:
state_dict = torch.load(shard_file)
self.assertEqual(len(state_dict), 1)
# Check the index and the shard files found match
with open(index_file, "r", encoding="utf-8") as f:
index = json.loads(f.read())
all_shards = set(index["weight_map"].values())
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")}
self.assertSetEqual(all_shards, shards_found)
# Finally, check the model can be reloaded
new_model = BertModel.from_pretrained(tmp_dir)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_sharding_from_hub(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
# the model above is the same as the model below, just a sharded version.
ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
for p1, p2 in zip(model.parameters(), ref_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_local_bin(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=False)
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
weights_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_local_sharded_bin(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=False)
weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
weights_index_file = os.path.join(tmp_dir, weights_index_name)
self.assertTrue(os.path.isfile(weights_index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
for i in range(1, 5):
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["bin"])
weights_name_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_name_file))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_checkpoint_variant_local_safe(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True)
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"])
weights_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_checkpoint_variant_local_sharded_safe(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True)
weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
weights_index_file = os.path.join(tmp_dir, weights_index_name)
self.assertTrue(os.path.isfile(weights_index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
for i in range(1, 5):
weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00005"] + ["safetensors"])
weights_name_file = os.path.join(tmp_dir, weights_name)
self.assertTrue(os.path.isfile(weights_name_file))
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(tmp_dir)
new_model = BertModel.from_pretrained(tmp_dir, variant="v2")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_checkpoint_variant_hub(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
def test_checkpoint_variant_hub_sharded(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir
)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
@require_safetensors
def test_checkpoint_variant_hub_safe(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
@require_safetensors
def test_checkpoint_variant_hub_sharded_safe(self):
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(EnvironmentError):
_ = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir
)
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2"
)
self.assertIsNotNone(model)
def test_checkpoint_variant_save_load_bin(self):
with tempfile.TemporaryDirectory() as tmp_dir:
model = BertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
)
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
model.save_pretrained(tmp_dir, variant="v2", safe_serialization=False)
# saving will create a variant checkpoint
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))
model.save_pretrained(tmp_dir, safe_serialization=False)
# saving shouldn't delete variant checkpoints
weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))
# there should be a normal checkpoint
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
self.assertIsNotNone(model)
@require_accelerate
@mark.accelerate_tests
def test_from_pretrained_low_cpu_mem_usage_functional(self):
# test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
# sharded models
mnames = [
"hf-internal-testing/tiny-random-bert-sharded",
"hf-internal-testing/tiny-random-bert",
]
for mname in mnames:
_ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)
@require_usr_bin_time
@require_accelerate
@mark.accelerate_tests
def test_from_pretrained_low_cpu_mem_usage_measured(self):
# test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default
mname = "bert-base-cased"
preamble = "from transformers import AutoModel"
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
# print(f"{max_rss_normal=}")
one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
# print(f"{max_rss_low_mem=}")
diff_bytes = max_rss_normal - max_rss_low_mem
diff_percent = diff_bytes / max_rss_low_mem
# print(f"{diff_bytes=}, {diff_percent=}")
# ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
# measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
# it's at least 15% less cpu memory consumed
self.assertGreater(
diff_percent,
0.15,
"should use less CPU memory for low_cpu_mem_usage=True, "
f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
)
# if you want to compare things manually, let's first look at the size of the model in bytes
# model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
# total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
# total_bytes = total_numel * 4 # 420MB
# Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
# The easiest way to test this is to switch the model and torch.load to do all the work on
# gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
# functionality to load models directly on gpu, this test can be rewritten to use torch's
# cuda memory tracking and then we should be able to do a much more precise test.
@require_accelerate
@mark.accelerate_tests
@require_torch_multi_accelerator
@slow
def test_model_parallelism_gpt2(self):
device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
for i in range(12):
device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1
model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
inputs = tokenizer("Hello, my name is", return_tensors="pt")
output = model.generate(inputs["input_ids"].to(0))
text_output = tokenizer.decode(output[0].tolist())
self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_from_pretrained_disk_offload_task_model(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
device_map = {
"transformer.wte": 0,
"transformer.wpe": 0,
"transformer.h.0": "cpu",
"transformer.h.1": "cpu",
"transformer.h.2": "cpu",
"transformer.h.3": "disk",
"transformer.h.4": "disk",
"transformer.ln_f": 0,
"lm_head": 0,
}
with tempfile.TemporaryDirectory() as tmp_dir:
inputs = torch.tensor([[1, 2, 3]]).to(0)
model.save_pretrained(tmp_dir)
new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
outputs1 = new_model.to(0)(inputs)
offload_folder = os.path.join(tmp_dir, "offload")
new_model_with_offload = AutoModelForCausalLM.from_pretrained(
tmp_dir, device_map=device_map, offload_folder=offload_folder
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))
# With state dict temp offload
offload_folder = os.path.join(tmp_dir, "offload")
new_model_with_offload = AutoModelForCausalLM.from_pretrained(
tmp_dir,
device_map=device_map,
offload_folder=offload_folder,
offload_state_dict=True,
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_from_pretrained_disk_offload_derived_to_base_model(self):
derived_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
device_map = {
"wte": 0,
"wpe": 0,
"h.0": "cpu",
"h.1": "cpu",
"h.2": "cpu",
"h.3": "disk",
"h.4": "disk",
"ln_f": 0,
}
with tempfile.TemporaryDirectory() as tmp_dir:
inputs = torch.tensor([[1, 2, 3]]).to(0)
derived_model.save_pretrained(tmp_dir, use_safetensors=True)
base_model = AutoModel.from_pretrained(tmp_dir)
outputs1 = base_model.to(0)(inputs)
# with disk offload
offload_folder = os.path.join(tmp_dir, "offload")
base_model_with_offload = AutoModel.from_pretrained(
tmp_dir, device_map=device_map, offload_folder=offload_folder
)
outputs2 = base_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1[0].cpu(), outputs2[0].cpu()))
# With state dict temp offload
new_model_with_offload = AutoModel.from_pretrained(
tmp_dir,
device_map=device_map,
offload_folder=offload_folder,
offload_state_dict=True,
)
outputs2 = new_model_with_offload(inputs)
self.assertTrue(torch.allclose(outputs1[0].cpu(), outputs2[0].cpu()))
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_load_from_one_file(self):
try:
tmp_file = tempfile.mktemp()
with open(tmp_file, "wb") as f:
http_get(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
)
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = BertModel.from_pretrained(tmp_file, config=config)
finally:
os.remove(tmp_file)
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = BertModel.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
)
@require_safetensors
def test_use_safetensors(self):
# Should not raise anymore
AutoModel.from_pretrained("hf-internal-testing/tiny-random-RobertaModel", use_safetensors=True)
# test that error if only safetensors is available
with self.assertRaises(OSError) as env_error:
BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors", use_safetensors=False)
self.assertTrue("does not appear to have a file named pytorch_model.bin" in str(env_error.exception))
# test that only safetensors if both available and use_safetensors=False
with tempfile.TemporaryDirectory() as tmp_dir:
CLIPTextModel.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
subfolder="text_encoder",
use_safetensors=False,
cache_dir=tmp_dir,
)
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
self.assertTrue(any(f.endswith("bin") for f in all_downloaded_files))
self.assertFalse(any(f.endswith("safetensors") for f in all_downloaded_files))
# test that no safetensors if both available and use_safetensors=True
with tempfile.TemporaryDirectory() as tmp_dir:
CLIPTextModel.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
subfolder="text_encoder",
use_safetensors=True,
cache_dir=tmp_dir,
)
all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
self.assertTrue(any(f.endswith("safetensors") for f in all_downloaded_files))
self.assertFalse(any(f.endswith("bin") for f in all_downloaded_files))
@require_safetensors
def test_safetensors_save_and_load(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
# No pytorch_model.bin file, only a model.safetensors
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
new_model = BertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_load_from_hub(self):
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Check models are equal
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_save_and_load_sharded(self):
model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
# No pytorch_model.bin index file, only a model.safetensors index
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
# No regular weights file
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
new_model = BertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
@require_safetensors
def test_safetensors_load_from_hub_sharded(self):
safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
# Check models are equal
for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
def test_base_model_to_head_model_load(self):
base_model = BaseModel(PretrainedConfig())
with tempfile.TemporaryDirectory() as tmp_dir:
base_model.save_pretrained(tmp_dir, safe_serialization=False)
# Can load a base model in a model with head
model = ModelWithHead.from_pretrained(tmp_dir)
for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
self.assertTrue(torch.allclose(p1, p2))
# It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
base_state_dict = base_model.state_dict()
head_state_dict = model.state_dict()
base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
safe_save_file(base_state_dict, os.path.join(tmp_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
with self.assertRaisesRegex(
ValueError, "The state dictionary of the model you are trying to load is corrupted."
):
_ = ModelWithHead.from_pretrained(tmp_dir)
def test_tied_weights_reload(self):
# Base
model = BaseModelWithTiedWeights(PretrainedConfig())
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
new_model = BaseModelWithTiedWeights.from_pretrained(tmp_dir)
self.assertIs(new_model.linear.weight, new_model.linear_2.weight)
state_dict = model.state_dict()
# Remove tied weight from state_dict -> model should load with no complain of missing keys
del state_dict["linear_2.weight"]
torch.save(state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))
new_model, load_info = BaseModelWithTiedWeights.from_pretrained(tmp_dir, output_loading_info=True)
self.assertListEqual(load_info["missing_keys"], [])
self.assertIs(new_model.linear.weight, new_model.linear_2.weight)
# With head
model.save_pretrained(tmp_dir)
new_model, load_info = ModelWithHeadAndTiedWeights.from_pretrained(tmp_dir, output_loading_info=True)
self.assertIs(new_model.base.linear.weight, new_model.decoder.weight)
# Should only complain about the missing bias
self.assertListEqual(load_info["missing_keys"], ["decoder.bias"])
def test_unexpected_keys_warnings(self):
model = ModelWithHead(PretrainedConfig())
logger = logging.get_logger("transformers.modeling_utils")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
# Loading the model with a new class, we don't get a warning for unexpected weights, just an info
with CaptureLogger(logger) as cl:
_, loading_info = BaseModel.from_pretrained(tmp_dir, output_loading_info=True)
self.assertNotIn("were not used when initializing ModelWithHead", cl.out)
self.assertEqual(
set(loading_info["unexpected_keys"]),
{"linear.weight", "linear.bias", "linear2.weight", "linear2.bias"},
)
# Loading the model with the same class, we do get a warning for unexpected weights
state_dict = model.state_dict()
state_dict["added_key"] = copy.deepcopy(state_dict["linear.weight"])
safe_save_file(state_dict, os.path.join(tmp_dir, SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
with CaptureLogger(logger) as cl:
_, loading_info = ModelWithHead.from_pretrained(tmp_dir, output_loading_info=True)
self.assertIn("were not used when initializing ModelWithHead: ['added_key']", cl.out)
self.assertEqual(loading_info["unexpected_keys"], ["added_key"])
def test_warn_if_padding_and_no_attention_mask(self):
logger = logging.get_logger("transformers.modeling_utils")
with self.subTest("Ensure no warnings when pad_token_id is None."):
logger.warning_once.cache_clear()
with CaptureLogger(logger) as cl:
config_no_pad_token = PretrainedConfig()
config_no_pad_token.pad_token_id = None
model = ModelWithHead(config_no_pad_token)
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 0, 0]])
model.warn_if_padding_and_no_attention_mask(input_ids, attention_mask=None)