-
Notifications
You must be signed in to change notification settings - Fork 829
/
Copy pathadded_vocabulary.rs
1032 lines (936 loc) · 35.5 KB
/
added_vocabulary.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use super::{
normalizer::Range, Model, NormalizedString, Normalizer, Offsets, PreTokenizedString, Token,
};
use aho_corasick::{AhoCorasick, AhoCorasickBuilder, MatchKind};
use regex::Regex;
use serde::{ser::SerializeSeq, Deserialize, Serialize, Serializer};
use std::collections::{HashMap, HashSet};
/// Represent a token added by the user on top of the existing Model vocabulary.
/// AddedToken can be configured to specify the behavior they should have in various situations
/// like:
/// - Whether they should only match single words
/// - Whether to include any whitespace on its left or right
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct AddedToken {
/// The content of the added token
pub content: String,
/// Whether this token must be a single word or can break words
pub single_word: bool,
/// Whether this token should strip whitespaces on its left
pub lstrip: bool,
/// Whether this token should strip whitespaces on its right
pub rstrip: bool,
/// Whether this token should be normalized
pub normalized: bool,
/// Whether this token is special
pub special: bool,
}
impl AddedToken {
/// Build this token from the given content, specifying if it is intented to be a
/// special token. Special tokens are not normalized by default.
pub fn from<S: Into<String>>(content: S, special: bool) -> Self {
Self {
content: content.into(),
normalized: !special,
special,
..Default::default()
}
}
/// Specify whether this token should only match on whole single words, and never
/// part of a word.
#[must_use]
pub fn single_word(mut self, single_word: bool) -> Self {
self.single_word = single_word;
self
}
/// Specify whether this token should include all the whitespaces on its left, in
/// order to strip them out.
#[must_use]
pub fn lstrip(mut self, lstrip: bool) -> Self {
self.lstrip = lstrip;
self
}
/// Specify whether this token should include all the whitespaces on its right, in
/// order to strip them out.
#[must_use]
pub fn rstrip(mut self, rstrip: bool) -> Self {
self.rstrip = rstrip;
self
}
/// Specify whether this token should be normalized and match against its normalized
/// version in the input text.
#[must_use]
pub fn normalized(mut self, normalized: bool) -> Self {
self.normalized = normalized;
self
}
/// Specify whether this token is special, meaning if it should be skipped when decoding
#[must_use]
pub fn special(mut self, special: bool) -> Self {
self.special = special;
self
}
}
impl Default for AddedToken {
fn default() -> Self {
Self {
content: String::new(),
single_word: false,
lstrip: false,
rstrip: false,
normalized: true,
special: false,
}
}
}
// AddedTokens can be updated if value changed
impl std::hash::Hash for AddedToken {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.content.hash(state);
}
}
type MatchingSet = (AhoCorasick, Vec<u32>);
lazy_static! {
static ref STARTS_WITH_WORD: Regex = Regex::new(r"^\w").unwrap();
static ref ENDS_WITH_WORD: Regex = Regex::new(r"\w$").unwrap();
static ref RIGHTMOST_SPACE_AT_START: Regex = Regex::new(r"^\s*").unwrap();
static ref LEFTMOST_SPACE_AT_END: Regex = Regex::new(r"\s*$").unwrap();
}
fn ends_with_word(sentence: &str) -> bool {
ENDS_WITH_WORD.is_match(sentence)
}
fn starts_with_word(sentence: &str) -> bool {
STARTS_WITH_WORD.is_match(sentence)
}
fn space_leftmost_at_end(sentence: &str) -> usize {
if let Some(match_) = LEFTMOST_SPACE_AT_END.find(sentence) {
match_.start()
} else {
sentence.len()
}
}
fn space_rightmost_at_start(sentence: &str) -> usize {
if let Some(match_) = RIGHTMOST_SPACE_AT_START.find(sentence) {
match_.end()
} else {
0
}
}
///
/// A vocabulary built on top of the Model
///
/// This provides a way to add new vocabulary to a Tokenizer that has already been trained,
/// in a previous process, maybe by someone else. This is especially interesting in the case
/// of fine-tunings, where we want to finetune a model while adding some new functionalities
/// using some new special tokens, or maybe add some tokens in the case of unknown tokens, etc.
///
/// One of the reasons we need to handle these tokens outside of the model is simply that
/// for many models, it is not possible to add new tokens after the training process. For example,
/// using BPE, the training process generates merges pairs along the vocabulary, and any token
/// in the vocabulary can be decomposed in other tokens, down to the original alphabet. If we
/// were to add new tokens after this training process, we couldn't make sure the merges pairs
/// exist as required.
///
#[derive(Clone, Debug)]
pub struct AddedVocabulary {
/// Contains the mapping from String (token content) to ID. This map contains both special
/// tokens and classic added tokens that were added to the this vocabulary.
added_tokens_map: HashMap<String, u32>,
/// Contains the mapping from ID to AddedToken for all the added tokens, both special
/// and classic.
added_tokens_map_r: HashMap<u32, AddedToken>,
/// Contains only the classic AddedToken, in the specific order the user gave them.
added_tokens: Vec<AddedToken>,
/// Contains only the special AddedToken, in the specific order the user gave them.
special_tokens: Vec<AddedToken>,
/// A Set, containing all the special token for easy access while decoding. This let's
/// us remove them easily with an O(1) complexity.
special_tokens_set: HashSet<String>,
/// A RegexSet containing all the non-normalized patterns used to split on AddedTokens
split_trie: MatchingSet,
/// A RegexSet containing all the normalized patterns used to split on AddedTokens
split_normalized_trie: MatchingSet,
/// Whether or not special tokens should be splitted when encoding. This is equivalent to ignoring them
encode_special_tokens: bool,
}
impl AddedVocabulary {
pub fn new() -> Self {
let trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build::<_, &&[u8]>([])
.expect("The trie should build correctly");
let normalized_trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build::<_, &&[u8]>([])
.expect("The normalized trie should build correctly");
Self {
added_tokens_map: HashMap::new(),
added_tokens_map_r: HashMap::new(),
added_tokens: vec![],
special_tokens: vec![],
special_tokens_set: HashSet::new(),
split_trie: (trie, vec![]),
split_normalized_trie: (normalized_trie, vec![]),
encode_special_tokens: false,
}
}
/// Size of the additional vocabulary
#[allow(dead_code)] // Suppress the "method is never used" warning
pub fn len(&self) -> usize {
self.added_tokens_map.len()
}
/// Whether or not this vocabulary is empty
pub fn is_empty(&self) -> bool {
self.added_tokens_map.is_empty()
}
/// Get the additional vocabulary
pub fn get_vocab(&self) -> &HashMap<String, u32> {
&self.added_tokens_map
}
/// Get the additional vocabulary with the AddedTokens
pub fn get_added_tokens_decoder(&self) -> &HashMap<u32, AddedToken> {
&self.added_tokens_map_r
}
/// Get the id matching one of our token if it exists
pub fn token_to_id(&self, token: &str, model: &impl Model) -> Option<u32> {
self.added_tokens_map
.get(token)
.copied()
.or_else(|| model.token_to_id(token))
}
/// Get the token matching the given id if it exists
#[deprecated(
since = "0.19.0",
note = "please use `added_vocabulary.simple_id_to_token(id).or_else(|| model.id_to_token(id)` instead"
)]
pub fn id_to_token(&self, id: u32, model: &impl Model) -> Option<String> {
self.added_tokens_map_r
.get(&id)
.map(|t| t.content.clone())
.or_else(|| model.id_to_token(id))
}
pub fn simple_id_to_token(&self, id: u32) -> Option<String> {
self.added_tokens_map_r.get(&id).map(|t| t.content.clone())
}
//
pub fn set_encode_special_tokens(&mut self, value: bool) {
self.encode_special_tokens = value;
}
pub fn get_encode_special_tokens(&self) -> bool {
self.encode_special_tokens
}
/// Check if a token is a special token
pub fn is_special_token(&self, token: &str) -> bool {
self.special_tokens_set.contains(token)
}
/// Add some special tokens to the vocabulary
pub fn add_special_tokens<N: Normalizer>(
&mut self,
tokens: &[AddedToken],
model: &impl Model,
normalizer: Option<&N>,
) -> usize {
self.add_tokens(tokens, model, normalizer)
}
/// Add some tokens to the vocabulary
pub fn add_tokens<N: Normalizer>(
&mut self,
tokens: &[AddedToken],
model: &impl Model,
normalizer: Option<&N>,
) -> usize {
// Handle special tokens (if any)
for token in tokens {
if token.special
&& !token.content.is_empty()
&& !self.special_tokens_set.contains(&token.content)
{
self.special_tokens.push(token.to_owned());
self.special_tokens_set.insert(token.content.clone());
}
}
// Then we delegate to `add_tokens`, that will take care of refreshing added tokens too.
let mut ignored = 0;
for token in tokens {
if token.content.is_empty() || self.added_tokens_map_r.values().any(|val| val == token)
{
ignored += 1;
continue;
}
// If a token is already part of the vocabulary, we mark it as added
let new_id = if let Some(new_id) = self.token_to_id(&token.content, model) {
new_id
} else {
self.added_tokens_map.values().cloned().max().map_or(
model.get_vocab_size() as u32,
|max| {
if (max >= model.get_vocab_size() as u32) || model.get_vocab_size() == 0 {
max + 1
} else {
model.get_vocab_size() as u32
}
},
)
};
// Make sure we modify the previous entry
self.added_tokens_map
.entry(token.content.clone())
.and_modify(|old_id| *old_id = new_id)
.or_insert_with(|| new_id);
// Update the current revert operation
self.added_tokens_map_r
.entry(new_id)
.and_modify(|t| *t = token.clone())
.or_insert_with(|| token.clone());
// Make sure to remove previous entry (if the token gets a new id)
// Finally add the token to the classic set if special
if !self.special_tokens_set.contains(&token.content) {
self.added_tokens.push(token.clone());
}
}
self.refresh_added_tokens(model, normalizer);
// Return the number of added tokens
tokens.len() - ignored
}
/// Reconstruct our internal RegexSet when new tokens are added to the vocabulary.
///
/// We keep two different RegexSet, one that will take care of matching against the
/// non-normalized string, and one matching against the normalized one.
fn refresh_added_tokens<N: Normalizer>(&mut self, model: &impl Model, normalizer: Option<&N>) {
type TupleTokenId<'a> = (&'a AddedToken, u32);
let (normalized, non_normalized): (Vec<TupleTokenId>, Vec<TupleTokenId>) = self
.special_tokens
.iter()
.chain(self.added_tokens.iter())
.map(|token| {
(
token,
self.token_to_id(&token.content, model)
.expect("Missing additional token"),
)
})
.partition(|(token, _)| token.normalized);
let (tokens, ids): (Vec<&AddedToken>, Vec<u32>) = non_normalized.into_iter().unzip();
let trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build(tokens.iter().map(|token| &token.content))
.expect("Failed to build tried when refreshing tokens");
self.split_trie = (trie, ids);
let (ntokens, nids): (Vec<&AddedToken>, Vec<u32>) = normalized.into_iter().unzip();
let patterns: Vec<_> = ntokens
.iter()
.map(|token| {
let mut content = NormalizedString::from(token.content.as_ref());
if let Some(n) = normalizer {
n.normalize(&mut content).unwrap();
}
content
})
.collect();
let normalized_trie = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostLongest)
.build(patterns.iter().map(|content| content.get()))
.expect("Failed to build tried when refreshing tokens (normalized)");
self.split_normalized_trie = (normalized_trie, nids);
}
/// Find any AddedToken in the given sentence, using the provided MatchingSet.
/// This method returns a list "splits", each of them being a pair of Offsets
/// and an optional ID if it is an AddedToken.
/// The list of splits cover the entire input string.
fn find_matches(&self, sentence: &str, split_re: &MatchingSet) -> Vec<(Option<u32>, Offsets)> {
if sentence.is_empty() {
return vec![(None, (0, 0))];
}
let mut start_offset = 0;
let mut splits = vec![];
for mat in split_re.0.find_iter(sentence) {
let mut start = mat.start();
let mut stop = mat.end();
let aho_id = mat.pattern();
let id = split_re.1[aho_id];
let added_token = &self.added_tokens_map_r.get(&id).unwrap();
if self.encode_special_tokens && self.special_tokens_set.contains(&added_token.content)
{
continue;
}
if added_token.single_word {
let start_space = start == 0 || !ends_with_word(&sentence[..start]);
let stop_space = stop == sentence.len() || !starts_with_word(&sentence[stop..]);
if !stop_space || !start_space {
// Discard not single word
continue;
}
}
if added_token.lstrip {
// This will be strictly inferior to start and in correct sentence offset
let newstart = space_leftmost_at_end(&sentence[..start]);
// The previous match could have already matched those spaces
// Ignore them if it's already matched
start = std::cmp::max(newstart, start_offset);
}
if added_token.rstrip {
// This will starting a the stop+1 character, so we need
// to add the previous stop value
stop += space_rightmost_at_start(&sentence[stop..])
}
if start_offset < start {
splits.push((None, (start_offset, start)));
}
splits.push((Some(id), (start, stop)));
start_offset = stop;
}
let total_byte_len = sentence.len();
if start_offset != total_byte_len {
splits.push((None, (start_offset, total_byte_len)));
}
splits
}
/// Split the input sentence to extract anything we found from the `MatchingSet`, as well as
/// the list of corresponding IDs
/// The list of IDs have the exact same number of elements than the Iterator.
fn split_with_indices(
&self,
sentence: NormalizedString,
split_re: &MatchingSet,
) -> Vec<(NormalizedString, Option<Vec<Token>>)> {
self.find_matches(sentence.get(), split_re)
.into_iter()
.map(|(id, byte_offsets)| {
let slice = sentence
.slice(Range::Normalized(byte_offsets.0..byte_offsets.1))
.expect("AddedVocabulary bad split");
if let Some(id) = id {
let value = slice.get().to_owned();
let len = value.len();
(slice, Some(vec![Token::new(id, value, (0, len))]))
} else {
(slice, None)
}
})
.collect()
}
/// Extract the additional vocabulary from the given sentence, normalizing it along the way.
///
/// Some tokens should match against their normalized representation, as well as the
/// non-normalized one. For example, when we expect to extract the token `yesterday` in the
/// input sentence `I read a book Yesterday`, if the normalizer is supposed to lowercase
/// everything, we expect a match.
pub fn extract_and_normalize<N: Normalizer>(
&self,
normalizer: Option<&N>,
sequence: &str,
) -> PreTokenizedString {
let mut pretokenized: PreTokenizedString = sequence.into();
// 1. We extract all the non-normalized tokens from the non-normalized string
pretokenized
.split(|_, sequence| Ok(self.split_with_indices(sequence, &self.split_trie)))
.expect("AddedVocabulary bad split");
// <s> normalized = False
// "I read a book <s>Hey" -> "I read a book", " <s>", "Hey"
// </s> normalized = True -> "▁</s>"
// "I read a book</s>Hey" -> "I read a book</s>Hey"
// Day normalized = True -> "Day"
// "I read a book monday" -> "I read a book monday"
// [DAY] normalized = False -> "Day"
// "I read a [DAY] monday" -> "I read a " "[DAY]", "book monday"
// 320055
// 2. Then extract the normalized tokens from the normalized pieces of the string
pretokenized
.split(|_, mut sequence| {
normalizer.map(|n| n.normalize(&mut sequence));
Ok(self.split_with_indices(sequence, &self.split_normalized_trie))
})
.expect("AddedVocabulary bad split");
// ["I read a book", " <s>", "Hey"] -> ["▁I read a book", "▁ <s>", "▁Hey"]
// ["▁I read a book", "▁ <s>", "▁Hey"] -> [.., "▁ ", "<s>", "▁Hey"]
// </s> normalized = True -> "▁</s>"
// "I read a book</s>Hey" -> ["▁I read a book", "<","/","s",">", "Hey"]
// "I read a " "[DAY]", "book monday" -> "i read a " "[day]", "book monday"
pretokenized
}
}
impl Default for AddedVocabulary {
fn default() -> Self {
Self::new()
}
}
#[derive(Debug, Serialize, Deserialize)]
pub(super) struct AddedTokenWithId {
/// The id assigned to this token
pub id: u32,
#[serde(flatten)]
/// The target AddedToken
pub token: AddedToken,
}
impl Serialize for AddedVocabulary {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut added_tokens = self
.added_tokens_map_r
.iter()
.map(|(id, token)| AddedTokenWithId {
id: *id,
token: token.clone(),
})
.collect::<Vec<_>>();
// We need to have these added tokens ordered by ascending ID
added_tokens.sort_unstable_by_key(|o| o.id);
let mut vocabulary = serializer.serialize_seq(Some(added_tokens.len()))?;
for token in added_tokens {
vocabulary.serialize_element(&token)?;
}
vocabulary.end()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::normalizers::byte_level::ByteLevel as ByteLevelNormalizer;
use crate::normalizers::utils::Lowercase;
use crate::normalizers::NormalizerWrapper;
use crate::{OffsetReferential, OffsetType, Result, Token, Trainer};
use std::path::{Path, PathBuf};
#[derive(Serialize, Deserialize)]
struct ModelMock {
vocab: HashMap<String, u32>,
vocab_r: HashMap<u32, String>,
}
impl ModelMock {
pub fn new<I>(iter: I) -> Self
where
I: IntoIterator<Item = &'static (&'static str, u32)>,
{
let vocab: HashMap<String, u32> = iter
.into_iter()
.map(|&(tok, id)| (tok.to_string(), id))
.collect();
Self {
vocab_r: vocab
.iter()
.map(|(tok, id)| (*id, tok.to_owned()))
.collect(),
vocab,
}
}
}
fn simplify_output(result: &'_ PreTokenizedString) -> Vec<(&'_ str, Option<Vec<u32>>)> {
result
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, _, tokens)| {
(
s,
tokens
.as_ref()
.map(|t| t.iter().map(|t| t.id).collect::<Vec<_>>()),
)
})
.collect::<Vec<_>>()
}
struct TrainerMock;
impl Trainer for TrainerMock {
type Model = ModelMock;
fn should_show_progress(&self) -> bool {
true
}
fn train(&self, _model: &mut ModelMock) -> Result<Vec<AddedToken>> {
unimplemented!()
}
fn feed<I, S, F>(&mut self, _iterator: I, _process: F) -> Result<()>
where
I: Iterator<Item = S> + Send,
S: AsRef<str> + Send,
F: Fn(&str) -> Result<Vec<String>> + Sync,
{
unimplemented!()
}
}
impl Model for ModelMock {
type Trainer = TrainerMock;
fn tokenize(&self, _sequence: &str) -> Result<Vec<Token>> {
unimplemented!()
}
fn token_to_id(&self, token: &str) -> Option<u32> {
self.vocab.get(token).copied()
}
fn id_to_token(&self, id: u32) -> Option<String> {
self.vocab_r.get(&id).cloned()
}
fn get_vocab(&self) -> HashMap<String, u32> {
self.vocab.clone()
}
fn get_vocab_size(&self) -> usize {
self.vocab.len()
}
fn save(&self, _folder: &Path, _name: Option<&str>) -> Result<Vec<PathBuf>> {
unimplemented!()
}
fn get_trainer(&self) -> Self::Trainer {
TrainerMock
}
}
#[test]
fn can_add_tokens() {
let model = ModelMock::new(&[("test", 0), ("tost", 1)]);
let mut vocab = AddedVocabulary::new();
let normalizer: Option<&NormalizerWrapper> = None;
// Add tokens normally
assert_eq!(
vocab.add_tokens(
&[AddedToken::from("added_token_1", false)],
&model,
normalizer
),
1
);
let vocab_len: usize = vocab.len();
assert_eq!(vocab_len, 1);
// Does not add multiple time the same token
assert_eq!(
vocab.add_tokens(
&[
AddedToken::from("added_token_2", false),
AddedToken::from("added_token_2", false)
],
&model,
normalizer
),
1
);
assert_eq!(vocab.len(), 2);
// Also adds tokens already covered by the model
let added_token = AddedToken::from("test", false);
assert_eq!(
vocab.add_tokens(&[added_token.clone()], &model, normalizer),
1
);
assert_eq!(vocab.len(), 3);
assert_eq!(vocab.get_added_tokens_decoder()[&0], added_token);
}
#[test]
fn can_add_special_tokens() {
let model = ModelMock::new(&[("test", 0), ("tost", 1)]);
let mut vocab = AddedVocabulary::new();
let normalizer: Option<&NormalizerWrapper> = None;
// Add tokens normally
assert_eq!(
vocab.add_special_tokens(
&[AddedToken::from("added_token_1", true)],
&model,
normalizer
),
1
);
assert_eq!(vocab.len(), 1);
// Does not add multiple time the same token
assert_eq!(
vocab.add_special_tokens(
&[
AddedToken::from("added_token_2", true),
AddedToken::from("added_token_2", true)
],
&model,
normalizer
),
1
);
assert_eq!(vocab.len(), 2);
// Can add tokens already covered by the model
assert_eq!(
vocab.add_special_tokens(&[AddedToken::from("test", true)], &model, normalizer),
1
);
assert_eq!(vocab.len(), 3); // New token was added
assert!(vocab.is_special_token("test"));
assert_eq!(
*vocab.get_added_tokens_decoder(),
HashMap::from([
(0, AddedToken::from("test", true)),
(2, AddedToken::from("added_token_1", true)),
(3, AddedToken::from("added_token_2", true)),
])
);
assert!(vocab.added_tokens_map.contains_key("test"));
assert!(vocab.added_tokens_map_r.contains_key(&0));
vocab.add_tokens(
&[
AddedToken::from("tost", true),
AddedToken::from("another_two", false),
],
&model,
normalizer,
);
assert_eq!(vocab.len(), 5); // New token was added
assert_eq!(vocab.get_vocab()["another_two"], 4); // New token was added, but the index is not the length of the vocab
// Let's add an already added token again
assert_eq!(
vocab.add_special_tokens(&[AddedToken::from("another_two", true)], &model, normalizer),
1
);
assert_eq!(vocab.len(), 5); // Token was already there
assert_eq!(vocab.get_vocab()["another_two"], 4); // Token idx not changed
// Just checking that we can set the content of the string in rust
let mut token: AddedToken = AddedToken::from("Hey", false);
token.content = "hey".to_string();
assert_eq!(token.content, "hey"); // Token was already there
token.special = true;
assert!(token.special); // Token was already there
}
#[test]
fn can_extract_added_tokens() {
// Is able to extract both normal and special tokens
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer: Option<&NormalizerWrapper> = None;
vocab.add_tokens(
&[
AddedToken::from("my", false),
AddedToken::from("name", false),
],
&model,
normalizer,
);
vocab.add_special_tokens(
&[
AddedToken::from("[CLS]", true),
AddedToken::from("[SEP]", true),
],
&model,
normalizer,
);
let result = vocab.extract_and_normalize(normalizer, "[CLS] My name is Anthony [SEP]");
assert_eq!(
result
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, _, tokens)| (
s,
tokens
.as_ref()
.map(|t| t.iter().map(|t| t.id).collect::<Vec<_>>())
))
.collect::<Vec<_>>(),
vec![
("[CLS]", Some(vec![2])),
(" My ", None),
("name", Some(vec![1])),
(" is Anthony ", None),
("[SEP]", Some(vec![3]))
]
);
}
#[test]
fn options_use_cases() {
// Is able to extract both normal and special tokens, with various options (lstrip, rstrip,
// single_word, normalized)
let model = ModelMock::new(&[]);
let normalizer = Lowercase;
let mut vocab = AddedVocabulary::new();
vocab.add_tokens(
&[
AddedToken::from("my", false).lstrip(true).rstrip(true),
AddedToken::from("name", false),
AddedToken::from("ony", false).single_word(true),
],
&model,
Some(&normalizer),
);
vocab.add_special_tokens(
&[
AddedToken::from("[CLS]", true),
AddedToken::from("[SEP]", true),
],
&model,
Some(&normalizer),
);
let result =
vocab.extract_and_normalize(Some(&normalizer), "[CLS] My name is Anthony [SEP]");
assert_eq!(
simplify_output(&result),
vec![
("[CLS]", Some(vec![3])),
// This one includes both spaces because of the lstrip & rstrip
// And it matches because normalized == true
(" my ", Some(vec![0])),
("name", Some(vec![1])),
// `ony` is not extracted here thanks to single_word
(" is anthony ", None),
("[SEP]", Some(vec![4])),
]
);
}
#[test]
fn empty_matches() {
let vocab = AddedVocabulary::new();
let matches = vocab.find_matches("", &vocab.split_trie);
assert_eq!(matches, vec![(None, (0, 0))]);
}
#[test]
fn test_single_word_is_correct() {
// Is able to extract both normal and special tokens, with various options (lstrip, rstrip,
// single_word, normalized)
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
vocab.add_tokens(
&[AddedToken::from("<mask>", false).single_word(true)],
&model,
Some(&normalizer),
);
// Left, in the middle, non single world left, non single word right, end of sentence valid
let result = vocab.extract_and_normalize(
Some(&normalizer),
"<mask> My name <mask> A<mask> <mask>ony <mask>",
);
assert_eq!(
simplify_output(&result),
vec![
("<mask>", Some(vec![0])),
(" my name ", None),
("<mask>", Some(vec![0])),
(" a<mask> <mask>ony ", None),
("<mask>", Some(vec![0]))
]
);
}
#[test]
fn test_single_word_is_unicode_correct() {
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
assert_eq!(vocab.len(), 0);
vocab.add_tokens(
&[AddedToken::from("<mask>", false).single_word(true)],
&model,
Some(&normalizer),
);
let result = vocab.extract_and_normalize(Some(&normalizer), "<mask>, <mask>- ◌̰<mask>");
assert_eq!(
simplify_output(&result),
vec![
// Punctuation is not word
("<mask>", Some(vec![0])),
(", ", None),
// dash is not word
("<mask>", Some(vec![0])),
// This is unicode combining mark character and is word: https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
("- ◌̰<mask>", None),
]
);
}
#[test]
fn test_lstrip_unicode_space() {
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
vocab.add_tokens(
&[AddedToken::from("<mask>", false)
.lstrip(true)
.rstrip(true)
.single_word(true)],
&model,
Some(&normalizer),
);
let result = vocab
.extract_and_normalize(Some(&normalizer), "Hi <mask> there\t<mask>\t<mask>\u{2000}");
assert_eq!(
simplify_output(&result),
vec![
("hi", None),
// Regular space
(" <mask> ", Some(vec![0])),
("there", None),
// \t is a spacing character
("\t<mask>\t", Some(vec![0])),
// Non overlapping
// \u{2000} is mongolian vowel separator: https://jkorpela.fi/chars/spaces.html
("<mask>\u{2000}", Some(vec![0])),
]
);
}
#[test]
fn test_encode_special_tokens() {
let model = ModelMock::new(&[]);
let mut vocab = AddedVocabulary::new();
let normalizer = Lowercase;
vocab.add_tokens(
&[
AddedToken::from("<mask>", true)
.lstrip(true)
.rstrip(true)
.single_word(true),
AddedToken::from("ask>", false),
AddedToken::from("<pad>", true),
],
&model,
Some(&normalizer),
);
vocab.set_encode_special_tokens(true);
let result = vocab.extract_and_normalize(
Some(&normalizer),
"Hi <mask> there\t<mask>\t<mask>\u{2000} <pad> <mask><pad><pad>",
);
assert_eq!(
simplify_output(&result),
vec![
("hi <m", None),
("ask>", Some(vec![1])),
(" there\t<m", None),
("ask>", Some(vec![1])),
("\t<m", None),
("ask>", Some(vec![1])),
("\u{2000} <pad> <m", None),
("ask>", Some(vec![1])),
("<pad><pad>", None)
]
);
vocab.set_encode_special_tokens(false);
let result = vocab.extract_and_normalize(
Some(&normalizer),
"Hi <mask> there\t<mask>\t<mask>\u{2000} <pad> <mask><pad><pad>",
);
assert_eq!(
simplify_output(&result),
vec![
("hi", None),
(" <mask> ", Some(vec![0])),
("there", None),
("\t<mask>\t", Some(vec![0])),
("<mask>\u{2000} ", Some(vec![0])),
("<pad>", Some(vec![2])),
(" <mask>", Some(vec![0])),
("<pad>", Some(vec![2])),
("<pad>", Some(vec![2]))