-
Notifications
You must be signed in to change notification settings - Fork 990
/
lib.rs
177 lines (160 loc) · 6.57 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
mod ffi;
use candle::backend::BackendStorage;
use candle::cuda_backend::cudarc::driver::DevicePtr;
use candle::cuda_backend::WrapErr;
use candle::{CpuStorage, Layout, Result, Shape, Tensor};
use half::f16;
pub struct FlashAttn {
pub softmax_scale: f32,
pub causal: bool,
}
fn round_multiple(x: usize, m: usize) -> usize {
(x + m - 1) / m * m
}
impl candle::CustomOp3 for FlashAttn {
fn name(&self) -> &'static str {
"flash-hdim32-sm80"
}
fn cpu_fwd(
&self,
_: &CpuStorage,
_: &Layout,
_: &CpuStorage,
_: &Layout,
_: &CpuStorage,
_: &Layout,
) -> Result<(CpuStorage, Shape)> {
candle::bail!("no cpu support for flash-attn")
}
fn cuda_fwd(
&self,
q: &candle::CudaStorage,
q_l: &Layout,
k: &candle::CudaStorage,
k_l: &Layout,
v: &candle::CudaStorage,
v_l: &Layout,
) -> Result<(candle::CudaStorage, Shape)> {
// https://github.com/Dao-AILab/flash-attention/blob/b252072409e69c25f2b9d473cc534e49b24decd2/csrc/flash_attn/flash_api.cpp#L187
let dev = q.device();
let out_shape = q_l.shape().clone();
let out_l = Layout::contiguous(&out_shape);
let q = q.as_cuda_slice::<f16>()?;
let k = k.as_cuda_slice::<f16>()?;
let v = v.as_cuda_slice::<f16>()?;
let q_stride = q_l.stride();
let k_stride = k_l.stride();
let v_stride = v_l.stride();
let o_stride = out_l.stride();
let q_rank = q_stride.len();
let k_rank = k_stride.len();
let v_rank = v_stride.len();
let o_rank = o_stride.len();
if q_rank != 4 || k_rank != 4 || v_rank != 4 {
candle::bail!(
"flash-attn expects input tensors of rank 4 (q: {q_rank}, k: {k_rank}, v: {v_rank}"
)
}
if q_stride[q_rank - 1] != 1 {
candle::bail!("the last dim of q must be contiguous {q_stride:?}")
}
if k_stride[k_rank - 1] != 1 {
candle::bail!("the last dim of k must be contiguous {k_stride:?}")
}
if v_stride[v_rank - 1] != 1 {
candle::bail!("the last dim of v must be contiguous {v_stride:?}")
}
let (b_sz, seqlen_q, num_heads, head_size_og) = q_l.shape().dims4()?;
let (_b_sz, seqlen_k, num_heads_k, _head_size_og) = k_l.shape().dims4()?;
let expected_kv = (b_sz, seqlen_k, num_heads_k, head_size_og);
if expected_kv != k_l.shape().dims4()? {
candle::bail!("shape mismatch q {:?} and k {:?}", q_l.shape(), k_l.shape())
}
if expected_kv != v_l.shape().dims4()? {
candle::bail!("shape mismatch q {:?} and v {:?}", q_l.shape(), v_l.shape())
}
if head_size_og > 256 {
candle::bail!("only supports head dimension at most 256 (got {head_size_og})")
}
if head_size_og % 8 != 0 {
// TODO: Handle head sizes that are not a multiple of 8 via some padding.
candle::bail!("only supports head sizes that are a multiple of 8 (got {head_size_og})")
}
if num_heads % num_heads_k != 0 {
candle::bail!("number of k/v heads {num_heads_k} must divide number of heads in query {num_heads}")
}
let head_size = round_multiple(head_size_og, 8);
let head_size_rounded = round_multiple(head_size, 32);
let seqlen_q_rounded = round_multiple(seqlen_q, 128);
let seqlen_k_rounded = round_multiple(seqlen_k, 128);
let elem_count = out_shape.elem_count();
let dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
let softmax_lse = dev.alloc_zeros::<f32>(b_sz * num_heads * seqlen_q).w()?;
let causal = if self.causal { 1 } else { 0 };
unsafe {
let q_ptr = *q.device_ptr() as *const core::ffi::c_void;
let k_ptr = *k.device_ptr() as *const core::ffi::c_void;
let v_ptr = *v.device_ptr() as *const core::ffi::c_void;
let dst_ptr = *dst.device_ptr() as *const core::ffi::c_void;
let softmax_lse_ptr = *softmax_lse.device_ptr() as *const core::ffi::c_void;
ffi::run_mha(
q_ptr,
k_ptr,
v_ptr,
dst_ptr,
softmax_lse_ptr,
/* q_batch_stride */ q_stride[0] as u32,
/* k_batch_stride */ k_stride[0] as u32,
/* v_batch_stride */ v_stride[0] as u32,
/* o_batch_stride */ o_stride[0] as u32,
/* q_row_stride */ q_stride[q_rank - 3] as u32,
/* k_row_stride */ k_stride[k_rank - 3] as u32,
/* v_row_stride */ v_stride[v_rank - 3] as u32,
/* o_row_stride */ o_stride[o_rank - 3] as u32,
/* q_head_stride */ q_stride[q_rank - 2] as u32,
/* k_head_stride */ k_stride[k_rank - 2] as u32,
/* v_head_stride */ v_stride[v_rank - 2] as u32,
/* o_head_stride */ o_stride[o_rank - 2] as u32,
/* b */ b_sz as u32,
/* h */ num_heads as u32,
/* h_k */ num_heads_k as u32,
/* d */ head_size as u32,
/* d_rounded */ head_size_rounded as u32,
/* softmax_scale*/ self.softmax_scale,
/* seqlen_q */ seqlen_q as u32,
/* seqlen_k */ seqlen_k as u32,
/* seqlen_q_rounded */ seqlen_q_rounded as u32,
/* seqlen_k_rounded */ seqlen_k_rounded as u32,
/* is_causal */ causal,
)
}
let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev.clone());
Ok((dst, out_shape))
}
}
/// Flash-attention v2 layer using flash-attention.
///
/// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`.
/// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads
/// than q, the number of heads in k and v has to be divisible by the number of heads in q.
///
/// # Arguments
///
/// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`.
/// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
/// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`.
///
/// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`.
pub fn flash_attn(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
let op = FlashAttn {
softmax_scale,
causal,
};
q.custom_op3(k, v, op)
}